Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380874558> ?p ?o ?g. }
- W4380874558 endingPage "151" @default.
- W4380874558 startingPage "131" @default.
- W4380874558 abstract "Artificial intelligence (AI) is a disruptive innovation, involving the development and deployment of algorithms to classify data, and to find the abstract relationships between different data points. AI, its subtype machine learning (ML), and advanced version of ML that is deep learning (DL) have shown commendable progress in the last decade in various fields like marketing, banking, e-commerce platforms, streaming platforms, self-driving cars, retrosynthesis of chemicals, clinical trials, drug discovery, and others. This remarkable change has been attributed to the availability of high-speed internet, the internet of things, the huge amount of data, and most importantly cutting-edge computation tools like graphics processing units (GPUs), referred to as GPUs. Although the success of AI in medical imaging is limited initially, now stakeholders are focusing on the deployment of full-fledged AI systems by riding on the success of convolutional neural networks (CNNs) in other areas like image identification through computer vision, generation of an entirely new set of images, and videos based on training and testing datasets. Breast cancer is one of the most common cancers in women worldwide. Various diagnostic tools are there to conform positive or negative cases, still, sure-shot reliance on these tools is doubtful owing to unintentional flaws in scan interpretation by radiologists. Here, in such circumstances, experts are now leveraging AI to aid humans with faster, accurate, and bias-free interpretation much to the relief of patients. In this chapter, how AI is shaping and redefining entire mammogram interpretation has been elaborated besides throwing light on classical tools for diagnosis and interpretation of breast cancer." @default.
- W4380874558 created "2023-06-17" @default.
- W4380874558 creator A5075520218 @default.
- W4380874558 creator A5089489436 @default.
- W4380874558 date "2023-06-16" @default.
- W4380874558 modified "2023-10-12" @default.
- W4380874558 title "Artificial Intelligence‐Driven Decisions in Breast Cancer Diagnosis" @default.
- W4380874558 cites W1858615891 @default.
- W4380874558 cites W1917647701 @default.
- W4380874558 cites W1938908299 @default.
- W4380874558 cites W1981409157 @default.
- W4380874558 cites W2016748517 @default.
- W4380874558 cites W2030069582 @default.
- W4380874558 cites W2043943004 @default.
- W4380874558 cites W2048988218 @default.
- W4380874558 cites W2053381312 @default.
- W4380874558 cites W2068190319 @default.
- W4380874558 cites W2069816479 @default.
- W4380874558 cites W2074020279 @default.
- W4380874558 cites W2078839662 @default.
- W4380874558 cites W2095972041 @default.
- W4380874558 cites W2098543955 @default.
- W4380874558 cites W2101668496 @default.
- W4380874558 cites W2110069732 @default.
- W4380874558 cites W2114382114 @default.
- W4380874558 cites W2119077877 @default.
- W4380874558 cites W2122187477 @default.
- W4380874558 cites W2123869011 @default.
- W4380874558 cites W2131687610 @default.
- W4380874558 cites W2134991575 @default.
- W4380874558 cites W2139338111 @default.
- W4380874558 cites W2145701650 @default.
- W4380874558 cites W2159081982 @default.
- W4380874558 cites W2173290111 @default.
- W4380874558 cites W2280342795 @default.
- W4380874558 cites W2287342701 @default.
- W4380874558 cites W2290344319 @default.
- W4380874558 cites W2334639088 @default.
- W4380874558 cites W2470634419 @default.
- W4380874558 cites W2493683088 @default.
- W4380874558 cites W2525984666 @default.
- W4380874558 cites W2547430480 @default.
- W4380874558 cites W2551914088 @default.
- W4380874558 cites W2560617851 @default.
- W4380874558 cites W2576404523 @default.
- W4380874558 cites W2755007334 @default.
- W4380874558 cites W2766766852 @default.
- W4380874558 cites W2767236661 @default.
- W4380874558 cites W2772246530 @default.
- W4380874558 cites W2773642388 @default.
- W4380874558 cites W2791623610 @default.
- W4380874558 cites W2794622599 @default.
- W4380874558 cites W2800852522 @default.
- W4380874558 cites W2801576521 @default.
- W4380874558 cites W2802745431 @default.
- W4380874558 cites W2809504579 @default.
- W4380874558 cites W2885841583 @default.
- W4380874558 cites W2896485798 @default.
- W4380874558 cites W2901024487 @default.
- W4380874558 cites W2901954625 @default.
- W4380874558 cites W2902802452 @default.
- W4380874558 cites W2911605224 @default.
- W4380874558 cites W2917435428 @default.
- W4380874558 cites W2918598741 @default.
- W4380874558 cites W2919115771 @default.
- W4380874558 cites W2922512202 @default.
- W4380874558 cites W2924927402 @default.
- W4380874558 cites W2931011950 @default.
- W4380874558 cites W2936218643 @default.
- W4380874558 cites W2941459775 @default.
- W4380874558 cites W2964189045 @default.
- W4380874558 cites W2965651801 @default.
- W4380874558 cites W2975029521 @default.
- W4380874558 cites W2981182665 @default.
- W4380874558 cites W2987140650 @default.
- W4380874558 cites W3005140895 @default.
- W4380874558 cites W3081573058 @default.
- W4380874558 cites W3092305135 @default.
- W4380874558 cites W3119673448 @default.
- W4380874558 cites W3141523641 @default.
- W4380874558 cites W3150922124 @default.
- W4380874558 cites W3157851308 @default.
- W4380874558 cites W3163233543 @default.
- W4380874558 cites W3165265064 @default.
- W4380874558 cites W3174324211 @default.
- W4380874558 cites W3176187894 @default.
- W4380874558 cites W4205123687 @default.
- W4380874558 cites W4206348828 @default.
- W4380874558 cites W4210782160 @default.
- W4380874558 cites W4211005384 @default.
- W4380874558 cites W4211178472 @default.
- W4380874558 cites W4214891402 @default.
- W4380874558 cites W4285254954 @default.
- W4380874558 cites W4289519632 @default.
- W4380874558 cites W4290102473 @default.
- W4380874558 cites W4293224606 @default.
- W4380874558 cites W4293224876 @default.
- W4380874558 doi "https://doi.org/10.1002/9783527841165.ch8" @default.