Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382631978> ?p ?o ?g. }
- W4382631978 endingPage "i203" @default.
- W4382631978 startingPage "i194" @default.
- W4382631978 abstract "Recent methods for selective sweep detection cast the problem as a classification task and use summary statistics as features to capture region characteristics that are indicative of a selective sweep, thereby being sensitive to confounding factors. Furthermore, they are not designed to perform whole-genome scans or to estimate the extent of the genomic region that was affected by positive selection; both are required for identifying candidate genes and the time and strength of selection.We present ASDEC (https://github.com/pephco/ASDEC), a neural-network-based framework that can scan whole genomes for selective sweeps. ASDEC achieves similar classification performance to other convolutional neural network-based classifiers that rely on summary statistics, but it is trained 10× faster and classifies genomic regions 5× faster by inferring region characteristics from the raw sequence data directly. Deploying ASDEC for genomic scans achieved up to 15.2× higher sensitivity, 19.4× higher success rates, and 4× higher detection accuracy than state-of-the-art methods. We used ASDEC to scan human chromosome 1 of the Yoruba population (1000Genomes project), identifying nine known candidate genes." @default.
- W4382631978 created "2023-07-01" @default.
- W4382631978 creator A5010135755 @default.
- W4382631978 creator A5031546059 @default.
- W4382631978 creator A5080409255 @default.
- W4382631978 creator A5081532755 @default.
- W4382631978 date "2023-06-01" @default.
- W4382631978 modified "2023-10-14" @default.
- W4382631978 title "Genome-wide scans for selective sweeps using convolutional neural networks" @default.
- W4382631978 cites W1912672559 @default.
- W4382631978 cites W1947714123 @default.
- W4382631978 cites W2006189274 @default.
- W4382631978 cites W2018137141 @default.
- W4382631978 cites W2025253353 @default.
- W4382631978 cites W2028942681 @default.
- W4382631978 cites W2045641296 @default.
- W4382631978 cites W2075145469 @default.
- W4382631978 cites W2102951980 @default.
- W4382631978 cites W2106397195 @default.
- W4382631978 cites W2109195195 @default.
- W4382631978 cites W2112796928 @default.
- W4382631978 cites W2127864194 @default.
- W4382631978 cites W2131210485 @default.
- W4382631978 cites W2134599124 @default.
- W4382631978 cites W2136104310 @default.
- W4382631978 cites W2138687474 @default.
- W4382631978 cites W2139556375 @default.
- W4382631978 cites W2139752884 @default.
- W4382631978 cites W2140784970 @default.
- W4382631978 cites W2147476214 @default.
- W4382631978 cites W2149992227 @default.
- W4382631978 cites W2152799443 @default.
- W4382631978 cites W2155670634 @default.
- W4382631978 cites W2157149092 @default.
- W4382631978 cites W2157288342 @default.
- W4382631978 cites W2158057251 @default.
- W4382631978 cites W2203551296 @default.
- W4382631978 cites W2319462502 @default.
- W4382631978 cites W2809154107 @default.
- W4382631978 cites W2894993819 @default.
- W4382631978 cites W2919115771 @default.
- W4382631978 cites W2950327064 @default.
- W4382631978 cites W2950332142 @default.
- W4382631978 cites W2950467109 @default.
- W4382631978 cites W2950732129 @default.
- W4382631978 cites W2952005553 @default.
- W4382631978 cites W2963306315 @default.
- W4382631978 cites W2964688437 @default.
- W4382631978 cites W2989915159 @default.
- W4382631978 cites W3037441421 @default.
- W4382631978 cites W3047753060 @default.
- W4382631978 cites W3076549397 @default.
- W4382631978 cites W3081293193 @default.
- W4382631978 cites W3127238285 @default.
- W4382631978 cites W3131427723 @default.
- W4382631978 cites W4245219093 @default.
- W4382631978 cites W4251304755 @default.
- W4382631978 cites W4310258499 @default.
- W4382631978 doi "https://doi.org/10.1093/bioinformatics/btad265" @default.
- W4382631978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37387128" @default.
- W4382631978 hasPublicationYear "2023" @default.
- W4382631978 type Work @default.
- W4382631978 citedByCount "0" @default.
- W4382631978 crossrefType "journal-article" @default.
- W4382631978 hasAuthorship W4382631978A5010135755 @default.
- W4382631978 hasAuthorship W4382631978A5031546059 @default.
- W4382631978 hasAuthorship W4382631978A5080409255 @default.
- W4382631978 hasAuthorship W4382631978A5081532755 @default.
- W4382631978 hasBestOaLocation W43826319781 @default.
- W4382631978 hasConcept C104317684 @default.
- W4382631978 hasConcept C141231307 @default.
- W4382631978 hasConcept C144024400 @default.
- W4382631978 hasConcept C149923435 @default.
- W4382631978 hasConcept C153180895 @default.
- W4382631978 hasConcept C154945302 @default.
- W4382631978 hasConcept C197077220 @default.
- W4382631978 hasConcept C2908647359 @default.
- W4382631978 hasConcept C41008148 @default.
- W4382631978 hasConcept C50644808 @default.
- W4382631978 hasConcept C54355233 @default.
- W4382631978 hasConcept C81363708 @default.
- W4382631978 hasConcept C81917197 @default.
- W4382631978 hasConcept C86803240 @default.
- W4382631978 hasConceptScore W4382631978C104317684 @default.
- W4382631978 hasConceptScore W4382631978C141231307 @default.
- W4382631978 hasConceptScore W4382631978C144024400 @default.
- W4382631978 hasConceptScore W4382631978C149923435 @default.
- W4382631978 hasConceptScore W4382631978C153180895 @default.
- W4382631978 hasConceptScore W4382631978C154945302 @default.
- W4382631978 hasConceptScore W4382631978C197077220 @default.
- W4382631978 hasConceptScore W4382631978C2908647359 @default.
- W4382631978 hasConceptScore W4382631978C41008148 @default.
- W4382631978 hasConceptScore W4382631978C50644808 @default.
- W4382631978 hasConceptScore W4382631978C54355233 @default.
- W4382631978 hasConceptScore W4382631978C81363708 @default.
- W4382631978 hasConceptScore W4382631978C81917197 @default.
- W4382631978 hasConceptScore W4382631978C86803240 @default.
- W4382631978 hasIssue "Supplement_1" @default.