Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383604776> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4383604776 abstract "Countries with access to large bodies of water often aim to protect their maritime transport by employing maritime surveillance systems. However, the number of available sensors (e.g., cameras) is typically small compared to the to-be-monitored targets, and their Field of View (FOV) and range are often limited. This makes improving the situational awareness of maritime transports challenging. To this end, we propose a method that not only distributes multiple sensors but also plans paths for them to observe multiple targets, while minimizing the time needed to achieve situational awareness. In particular, we provide a formulation of this sensor allocation and path planning problem which considers the partial awareness of the targets' state, as well as the unawareness of the targets' trajectories. To solve the problem we present two algorithms: emph{1)} a greedy algorithm for assigning sensors to targets, and emph{2)} a distributed multi-agent path planning algorithm based on regret-matching learning. Because a quick convergence is a requirement for algorithms developed for high mobility environments, we employ a forgetting factor to quickly converge to correlated equilibrium solutions. Experimental results show that our combined approach achieves situational awareness more quickly than related work." @default.
- W4383604776 created "2023-07-08" @default.
- W4383604776 creator A5000020170 @default.
- W4383604776 creator A5027317977 @default.
- W4383604776 creator A5050878934 @default.
- W4383604776 creator A5056886268 @default.
- W4383604776 creator A5058399747 @default.
- W4383604776 creator A5074961986 @default.
- W4383604776 creator A5078547661 @default.
- W4383604776 date "2023-07-06" @default.
- W4383604776 modified "2023-10-18" @default.
- W4383604776 title "Sensor Allocation and Online-Learning-based Path Planning for Maritime Situational Awareness Enhancement: A Multi-Agent Approach" @default.
- W4383604776 doi "https://doi.org/10.48550/arxiv.2307.02790" @default.
- W4383604776 hasPublicationYear "2023" @default.
- W4383604776 type Work @default.
- W4383604776 citedByCount "0" @default.
- W4383604776 crossrefType "posted-content" @default.
- W4383604776 hasAuthorship W4383604776A5000020170 @default.
- W4383604776 hasAuthorship W4383604776A5027317977 @default.
- W4383604776 hasAuthorship W4383604776A5050878934 @default.
- W4383604776 hasAuthorship W4383604776A5056886268 @default.
- W4383604776 hasAuthorship W4383604776A5058399747 @default.
- W4383604776 hasAuthorship W4383604776A5074961986 @default.
- W4383604776 hasAuthorship W4383604776A5078547661 @default.
- W4383604776 hasBestOaLocation W43836047761 @default.
- W4383604776 hasConcept C105795698 @default.
- W4383604776 hasConcept C119857082 @default.
- W4383604776 hasConcept C120314980 @default.
- W4383604776 hasConcept C127413603 @default.
- W4383604776 hasConcept C138885662 @default.
- W4383604776 hasConcept C145804949 @default.
- W4383604776 hasConcept C146978453 @default.
- W4383604776 hasConcept C154945302 @default.
- W4383604776 hasConcept C162324750 @default.
- W4383604776 hasConcept C165064840 @default.
- W4383604776 hasConcept C2777303404 @default.
- W4383604776 hasConcept C2777735758 @default.
- W4383604776 hasConcept C31258907 @default.
- W4383604776 hasConcept C33923547 @default.
- W4383604776 hasConcept C41008148 @default.
- W4383604776 hasConcept C41895202 @default.
- W4383604776 hasConcept C42475967 @default.
- W4383604776 hasConcept C50522688 @default.
- W4383604776 hasConcept C50817715 @default.
- W4383604776 hasConcept C7149132 @default.
- W4383604776 hasConcept C79403827 @default.
- W4383604776 hasConcept C81074085 @default.
- W4383604776 hasConcept C90509273 @default.
- W4383604776 hasConceptScore W4383604776C105795698 @default.
- W4383604776 hasConceptScore W4383604776C119857082 @default.
- W4383604776 hasConceptScore W4383604776C120314980 @default.
- W4383604776 hasConceptScore W4383604776C127413603 @default.
- W4383604776 hasConceptScore W4383604776C138885662 @default.
- W4383604776 hasConceptScore W4383604776C145804949 @default.
- W4383604776 hasConceptScore W4383604776C146978453 @default.
- W4383604776 hasConceptScore W4383604776C154945302 @default.
- W4383604776 hasConceptScore W4383604776C162324750 @default.
- W4383604776 hasConceptScore W4383604776C165064840 @default.
- W4383604776 hasConceptScore W4383604776C2777303404 @default.
- W4383604776 hasConceptScore W4383604776C2777735758 @default.
- W4383604776 hasConceptScore W4383604776C31258907 @default.
- W4383604776 hasConceptScore W4383604776C33923547 @default.
- W4383604776 hasConceptScore W4383604776C41008148 @default.
- W4383604776 hasConceptScore W4383604776C41895202 @default.
- W4383604776 hasConceptScore W4383604776C42475967 @default.
- W4383604776 hasConceptScore W4383604776C50522688 @default.
- W4383604776 hasConceptScore W4383604776C50817715 @default.
- W4383604776 hasConceptScore W4383604776C7149132 @default.
- W4383604776 hasConceptScore W4383604776C79403827 @default.
- W4383604776 hasConceptScore W4383604776C81074085 @default.
- W4383604776 hasConceptScore W4383604776C90509273 @default.
- W4383604776 hasLocation W43836047761 @default.
- W4383604776 hasOpenAccess W4383604776 @default.
- W4383604776 hasPrimaryLocation W43836047761 @default.
- W4383604776 hasRelatedWork W1561867011 @default.
- W4383604776 hasRelatedWork W1901612881 @default.
- W4383604776 hasRelatedWork W2061238207 @default.
- W4383604776 hasRelatedWork W2112994798 @default.
- W4383604776 hasRelatedWork W2348661068 @default.
- W4383604776 hasRelatedWork W2584802818 @default.
- W4383604776 hasRelatedWork W2601432431 @default.
- W4383604776 hasRelatedWork W3082883870 @default.
- W4383604776 hasRelatedWork W3161999044 @default.
- W4383604776 hasRelatedWork W4312991110 @default.
- W4383604776 isParatext "false" @default.
- W4383604776 isRetracted "false" @default.
- W4383604776 workType "article" @default.