Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384927093> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4384927093 endingPage "115005" @default.
- W4384927093 startingPage "115005" @default.
- W4384927093 abstract "Abstract Deep learning-based methods have made remarkable progress in the field of fault diagnosis for rotating machinery. However, convolutional neural networks are not suitable for industrial applications due to their large model size and high computational complexity. To address this limitation, this paper proposes the Antisym module and constructs AntisymNet, which is combined with dimension expansion algorithms for fault diagnosis of rotating machinery. To begin with, the original vibration signal of the rolling machinery is subjected to time-frequency transformations using the discrete Fourier transform and discrete wavelet transform. Subsequently, each transformed time-frequency signal is expanded in dimensions, resulting in two-dimensional matrix single channel images. These single channel images are then fused into RGB images to enhance the sample features. Finally, the proposed AntisymNet is utilized for recognizing and classifying the expanded signals. To evaluate the performance of AntisymNet, the MiniImageNet image dataset is employed as a benchmark, and a comparison is made with other state-of-the-art lightweight convolutional neural networks. Additionally, the effectiveness of the proposed fault diagnosis model is validated using the CWRU bearing dataset, Ottawa bearing dataset, and the hob dataset. The model achieves an impressive accuracy rate of 99.70% in the CWRU dataset, 99.26% in the Ottawa dataset, and an error rate of only 0.66% in the hob dataset. These results demonstrate the strong performance of the proposed fault diagnosis model." @default.
- W4384927093 created "2023-07-22" @default.
- W4384927093 creator A5017315415 @default.
- W4384927093 creator A5045419027 @default.
- W4384927093 creator A5057927986 @default.
- W4384927093 creator A5063778999 @default.
- W4384927093 date "2023-07-28" @default.
- W4384927093 modified "2023-10-18" @default.
- W4384927093 title "Rotating machinery fault diagnosis using dimension expansion and AntisymNet lightweight convolutional neural network" @default.
- W4384927093 cites W1997654368 @default.
- W4384927093 cites W2021909145 @default.
- W4384927093 cites W2082484042 @default.
- W4384927093 cites W2126777570 @default.
- W4384927093 cites W2134922590 @default.
- W4384927093 cites W243674440 @default.
- W4384927093 cites W2744604411 @default.
- W4384927093 cites W2886794804 @default.
- W4384927093 cites W2900367617 @default.
- W4384927093 cites W2906578288 @default.
- W4384927093 cites W2971479067 @default.
- W4384927093 cites W2971915806 @default.
- W4384927093 cites W2985380938 @default.
- W4384927093 cites W2995758361 @default.
- W4384927093 cites W3009370740 @default.
- W4384927093 cites W3096153045 @default.
- W4384927093 cites W3193002911 @default.
- W4384927093 cites W3207455012 @default.
- W4384927093 cites W4200435622 @default.
- W4384927093 cites W4224273747 @default.
- W4384927093 cites W4225273092 @default.
- W4384927093 cites W4283592273 @default.
- W4384927093 cites W4286253308 @default.
- W4384927093 cites W4295956768 @default.
- W4384927093 cites W4296225832 @default.
- W4384927093 cites W4297346127 @default.
- W4384927093 cites W4312532083 @default.
- W4384927093 doi "https://doi.org/10.1088/1361-6501/ace928" @default.
- W4384927093 hasPublicationYear "2023" @default.
- W4384927093 type Work @default.
- W4384927093 citedByCount "0" @default.
- W4384927093 crossrefType "journal-article" @default.
- W4384927093 hasAuthorship W4384927093A5017315415 @default.
- W4384927093 hasAuthorship W4384927093A5045419027 @default.
- W4384927093 hasAuthorship W4384927093A5057927986 @default.
- W4384927093 hasAuthorship W4384927093A5063778999 @default.
- W4384927093 hasConcept C108583219 @default.
- W4384927093 hasConcept C127313418 @default.
- W4384927093 hasConcept C13280743 @default.
- W4384927093 hasConcept C153180895 @default.
- W4384927093 hasConcept C154945302 @default.
- W4384927093 hasConcept C165205528 @default.
- W4384927093 hasConcept C175551986 @default.
- W4384927093 hasConcept C185798385 @default.
- W4384927093 hasConcept C199978012 @default.
- W4384927093 hasConcept C202444582 @default.
- W4384927093 hasConcept C205649164 @default.
- W4384927093 hasConcept C33676613 @default.
- W4384927093 hasConcept C33923547 @default.
- W4384927093 hasConcept C41008148 @default.
- W4384927093 hasConcept C81363708 @default.
- W4384927093 hasConceptScore W4384927093C108583219 @default.
- W4384927093 hasConceptScore W4384927093C127313418 @default.
- W4384927093 hasConceptScore W4384927093C13280743 @default.
- W4384927093 hasConceptScore W4384927093C153180895 @default.
- W4384927093 hasConceptScore W4384927093C154945302 @default.
- W4384927093 hasConceptScore W4384927093C165205528 @default.
- W4384927093 hasConceptScore W4384927093C175551986 @default.
- W4384927093 hasConceptScore W4384927093C185798385 @default.
- W4384927093 hasConceptScore W4384927093C199978012 @default.
- W4384927093 hasConceptScore W4384927093C202444582 @default.
- W4384927093 hasConceptScore W4384927093C205649164 @default.
- W4384927093 hasConceptScore W4384927093C33676613 @default.
- W4384927093 hasConceptScore W4384927093C33923547 @default.
- W4384927093 hasConceptScore W4384927093C41008148 @default.
- W4384927093 hasConceptScore W4384927093C81363708 @default.
- W4384927093 hasFunder F4320321001 @default.
- W4384927093 hasIssue "11" @default.
- W4384927093 hasLocation W43849270931 @default.
- W4384927093 hasOpenAccess W4384927093 @default.
- W4384927093 hasPrimaryLocation W43849270931 @default.
- W4384927093 hasRelatedWork W2731899572 @default.
- W4384927093 hasRelatedWork W2999805992 @default.
- W4384927093 hasRelatedWork W3011074480 @default.
- W4384927093 hasRelatedWork W3116150086 @default.
- W4384927093 hasRelatedWork W3133861977 @default.
- W4384927093 hasRelatedWork W3192840557 @default.
- W4384927093 hasRelatedWork W4200173597 @default.
- W4384927093 hasRelatedWork W4291897433 @default.
- W4384927093 hasRelatedWork W4312417841 @default.
- W4384927093 hasRelatedWork W4321369474 @default.
- W4384927093 hasVolume "34" @default.
- W4384927093 isParatext "false" @default.
- W4384927093 isRetracted "false" @default.
- W4384927093 workType "article" @default.