Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385187227> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4385187227 abstract "Health care is a vital service that is constantly in high demand since everyone needs it. Individuals have higher hopes for advancement in this profession than for receiving the status quo since they would rather be treated better. Sometimes, or maybe more accurately, in many situations, the findings are not clear and the sickness cannot be understood at the first stage from a manual reading of the report. When it comes to viewing medical images, the fact that they must be interpreted by hand inevitably leads to delays and errors. Many deep learning and machine learning approaches can be used to address this issue. Therefore, although machine learning may be thought of as a subset of deep learning, the reverse is not true. Let's talk about how deep-learning models will be used to process medical images. Medical image processing is one area where deep learning models are having a profound effect. Convolutional neural networks (CNNs) and other deep learning techniques have made it feasible to automate the processing of medical pictures and improve diagnostic and treatment accuracy. It is widely used in radiology to examine medical pictures such as X-rays, CT scans, and MRIs. In order to aid radiologists in their diagnostic work, deep learning models may be taught to identify patterns and characteristics in medical pictures that are diagnostic of certain diseases or ailments." @default.
- W4385187227 created "2023-07-25" @default.
- W4385187227 creator A5003704293 @default.
- W4385187227 creator A5022653286 @default.
- W4385187227 creator A5049058034 @default.
- W4385187227 creator A5063105242 @default.
- W4385187227 creator A5078412004 @default.
- W4385187227 creator A5078772420 @default.
- W4385187227 date "2023-04-28" @default.
- W4385187227 modified "2023-09-23" @default.
- W4385187227 title "Deep Learning: The Future of Medical Image Processing" @default.
- W4385187227 cites W1591747416 @default.
- W4385187227 cites W2229512561 @default.
- W4385187227 cites W2910093290 @default.
- W4385187227 cites W2940831463 @default.
- W4385187227 cites W2963957999 @default.
- W4385187227 cites W3023173618 @default.
- W4385187227 cites W3105282616 @default.
- W4385187227 cites W3198067516 @default.
- W4385187227 cites W4280545415 @default.
- W4385187227 cites W4303185326 @default.
- W4385187227 cites W4321600817 @default.
- W4385187227 doi "https://doi.org/10.1109/cises58720.2023.10183477" @default.
- W4385187227 hasPublicationYear "2023" @default.
- W4385187227 type Work @default.
- W4385187227 citedByCount "0" @default.
- W4385187227 crossrefType "proceedings-article" @default.
- W4385187227 hasAuthorship W4385187227A5003704293 @default.
- W4385187227 hasAuthorship W4385187227A5022653286 @default.
- W4385187227 hasAuthorship W4385187227A5049058034 @default.
- W4385187227 hasAuthorship W4385187227A5063105242 @default.
- W4385187227 hasAuthorship W4385187227A5078412004 @default.
- W4385187227 hasAuthorship W4385187227A5078772420 @default.
- W4385187227 hasConcept C108583219 @default.
- W4385187227 hasConcept C111919701 @default.
- W4385187227 hasConcept C119857082 @default.
- W4385187227 hasConcept C154945302 @default.
- W4385187227 hasConcept C162324750 @default.
- W4385187227 hasConcept C17744445 @default.
- W4385187227 hasConcept C199539241 @default.
- W4385187227 hasConcept C2776748549 @default.
- W4385187227 hasConcept C31601959 @default.
- W4385187227 hasConcept C34447519 @default.
- W4385187227 hasConcept C41008148 @default.
- W4385187227 hasConcept C554936623 @default.
- W4385187227 hasConcept C81363708 @default.
- W4385187227 hasConcept C98045186 @default.
- W4385187227 hasConceptScore W4385187227C108583219 @default.
- W4385187227 hasConceptScore W4385187227C111919701 @default.
- W4385187227 hasConceptScore W4385187227C119857082 @default.
- W4385187227 hasConceptScore W4385187227C154945302 @default.
- W4385187227 hasConceptScore W4385187227C162324750 @default.
- W4385187227 hasConceptScore W4385187227C17744445 @default.
- W4385187227 hasConceptScore W4385187227C199539241 @default.
- W4385187227 hasConceptScore W4385187227C2776748549 @default.
- W4385187227 hasConceptScore W4385187227C31601959 @default.
- W4385187227 hasConceptScore W4385187227C34447519 @default.
- W4385187227 hasConceptScore W4385187227C41008148 @default.
- W4385187227 hasConceptScore W4385187227C554936623 @default.
- W4385187227 hasConceptScore W4385187227C81363708 @default.
- W4385187227 hasConceptScore W4385187227C98045186 @default.
- W4385187227 hasLocation W43851872271 @default.
- W4385187227 hasOpenAccess W4385187227 @default.
- W4385187227 hasPrimaryLocation W43851872271 @default.
- W4385187227 hasRelatedWork W2337926734 @default.
- W4385187227 hasRelatedWork W2731899572 @default.
- W4385187227 hasRelatedWork W3021430260 @default.
- W4385187227 hasRelatedWork W4281780675 @default.
- W4385187227 hasRelatedWork W4308993413 @default.
- W4385187227 hasRelatedWork W4315694979 @default.
- W4385187227 hasRelatedWork W4320802194 @default.
- W4385187227 hasRelatedWork W4366224123 @default.
- W4385187227 hasRelatedWork W4377092411 @default.
- W4385187227 hasRelatedWork W4381487685 @default.
- W4385187227 isParatext "false" @default.
- W4385187227 isRetracted "false" @default.
- W4385187227 workType "article" @default.