Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386478445> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4386478445 endingPage "e1548" @default.
- W4386478445 startingPage "e1548" @default.
- W4386478445 abstract "The rapid advancement of industrialization has sparked the emergence of diverse art and design theories. As a trailblazer in the realm of industrial art and design theory, visual communication has transcended the boundaries of merely arranging and combining individual elements. Embracing the potential of artificial intelligence technology, the extraction of multidimensional abstract data and the acceleration of the art design process have gained considerable momentum. This study delves into the abstract emotional facets within the methodology of visual communication art design. Initially, convolutional neural networks (CNN) are employed to extract expressive features from the poster’s visual information. Subsequently, these features are utilized to cluster emotional elements using a variational autoencoder (VAE). Through this clustering process, the poster images are categorized into positive, negative, and neutral classes. Experimental results demonstrate a silhouette coefficient surpassing 0.7, while the system framework exhibits clustering accuracy and efficiency exceeding 80% in single sentiment class testing. These outcomes underscore the efficacy of the proposed CNN-VAE-based clustering framework in analyzing the dynamic content of design elements. This framework presents a novel approach for future art design within the realm of visual communication." @default.
- W4386478445 created "2023-09-07" @default.
- W4386478445 creator A5085284295 @default.
- W4386478445 date "2023-09-06" @default.
- W4386478445 modified "2023-09-30" @default.
- W4386478445 title "A convolutional neural networks based approach for clustering of emotional elements in art design" @default.
- W4386478445 cites W2099215511 @default.
- W4386478445 cites W2100495367 @default.
- W4386478445 cites W2134879037 @default.
- W4386478445 cites W2741943936 @default.
- W4386478445 cites W2899729200 @default.
- W4386478445 cites W2919358988 @default.
- W4386478445 cites W2945551948 @default.
- W4386478445 cites W2953893671 @default.
- W4386478445 cites W3161970973 @default.
- W4386478445 cites W3172712781 @default.
- W4386478445 cites W3206824631 @default.
- W4386478445 cites W4200338839 @default.
- W4386478445 cites W4213244052 @default.
- W4386478445 cites W4224288289 @default.
- W4386478445 cites W4312342316 @default.
- W4386478445 cites W4361223347 @default.
- W4386478445 cites W4365420366 @default.
- W4386478445 doi "https://doi.org/10.7717/peerj-cs.1548" @default.
- W4386478445 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37705618" @default.
- W4386478445 hasPublicationYear "2023" @default.
- W4386478445 type Work @default.
- W4386478445 citedByCount "0" @default.
- W4386478445 crossrefType "journal-article" @default.
- W4386478445 hasAuthorship W4386478445A5085284295 @default.
- W4386478445 hasBestOaLocation W43864784451 @default.
- W4386478445 hasConcept C101738243 @default.
- W4386478445 hasConcept C111919701 @default.
- W4386478445 hasConcept C119857082 @default.
- W4386478445 hasConcept C154945302 @default.
- W4386478445 hasConcept C17744445 @default.
- W4386478445 hasConcept C199539241 @default.
- W4386478445 hasConcept C2778757428 @default.
- W4386478445 hasConcept C36464697 @default.
- W4386478445 hasConcept C41008148 @default.
- W4386478445 hasConcept C50644808 @default.
- W4386478445 hasConcept C73555534 @default.
- W4386478445 hasConcept C81363708 @default.
- W4386478445 hasConcept C98045186 @default.
- W4386478445 hasConceptScore W4386478445C101738243 @default.
- W4386478445 hasConceptScore W4386478445C111919701 @default.
- W4386478445 hasConceptScore W4386478445C119857082 @default.
- W4386478445 hasConceptScore W4386478445C154945302 @default.
- W4386478445 hasConceptScore W4386478445C17744445 @default.
- W4386478445 hasConceptScore W4386478445C199539241 @default.
- W4386478445 hasConceptScore W4386478445C2778757428 @default.
- W4386478445 hasConceptScore W4386478445C36464697 @default.
- W4386478445 hasConceptScore W4386478445C41008148 @default.
- W4386478445 hasConceptScore W4386478445C50644808 @default.
- W4386478445 hasConceptScore W4386478445C73555534 @default.
- W4386478445 hasConceptScore W4386478445C81363708 @default.
- W4386478445 hasConceptScore W4386478445C98045186 @default.
- W4386478445 hasLocation W43864784451 @default.
- W4386478445 hasLocation W43864784452 @default.
- W4386478445 hasOpenAccess W4386478445 @default.
- W4386478445 hasPrimaryLocation W43864784451 @default.
- W4386478445 hasRelatedWork W3021430260 @default.
- W4386478445 hasRelatedWork W3027997911 @default.
- W4386478445 hasRelatedWork W3165463024 @default.
- W4386478445 hasRelatedWork W3185156046 @default.
- W4386478445 hasRelatedWork W4220775285 @default.
- W4386478445 hasRelatedWork W4287083450 @default.
- W4386478445 hasRelatedWork W4287776258 @default.
- W4386478445 hasRelatedWork W4287995534 @default.
- W4386478445 hasRelatedWork W4296613218 @default.
- W4386478445 hasRelatedWork W4384300587 @default.
- W4386478445 hasVolume "9" @default.
- W4386478445 isParatext "false" @default.
- W4386478445 isRetracted "false" @default.
- W4386478445 workType "article" @default.