Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386827340> ?p ?o ?g. }
- W4386827340 endingPage "108429" @default.
- W4386827340 startingPage "108429" @default.
- W4386827340 abstract "For three decades, model predictive control (MPC) has been the flagship advanced control method in the chemical process industries. However, most implementations still use heuristic methods for designing MPC estimators, especially for offset-free MPC implementations. In this paper, we present a recently developed maximum likelihood-based method for the identification of linear augmented disturbance models for use in offset-free MPC. This method provides noise covariances that are used to derive Kalman filters and moving horizon estimators, forgoing the need for manual design and tuning of the estimator. The method is extended to handle closed-loop plant data. The proposed identification method and estimator design are evaluated in industrial-scale, real-world case study of a process at Eastman Chemical’s Kingsport plant. Using this identified model, we reduced the mean stage cost by 38% compared to the performance of the existing, hand-tuned MPC model." @default.
- W4386827340 created "2023-09-19" @default.
- W4386827340 creator A5005725288 @default.
- W4386827340 creator A5033056557 @default.
- W4386827340 creator A5070596945 @default.
- W4386827340 creator A5072676429 @default.
- W4386827340 date "2023-11-01" @default.
- W4386827340 modified "2023-10-02" @default.
- W4386827340 title "An industrial case study on the combined identification and offset-free control of a chemical process" @default.
- W4386827340 cites W1492106702 @default.
- W4386827340 cites W1542271580 @default.
- W4386827340 cites W1749883824 @default.
- W4386827340 cites W1980681268 @default.
- W4386827340 cites W1986922155 @default.
- W4386827340 cites W1989757707 @default.
- W4386827340 cites W1994154736 @default.
- W4386827340 cites W2001273167 @default.
- W4386827340 cites W2001746283 @default.
- W4386827340 cites W2005151817 @default.
- W4386827340 cites W2009685984 @default.
- W4386827340 cites W2014725748 @default.
- W4386827340 cites W2019254379 @default.
- W4386827340 cites W2026461234 @default.
- W4386827340 cites W2032982167 @default.
- W4386827340 cites W2034487019 @default.
- W4386827340 cites W2037935457 @default.
- W4386827340 cites W2043260411 @default.
- W4386827340 cites W2052635053 @default.
- W4386827340 cites W2077478652 @default.
- W4386827340 cites W2086901931 @default.
- W4386827340 cites W2093516101 @default.
- W4386827340 cites W2101358888 @default.
- W4386827340 cites W2120322256 @default.
- W4386827340 cites W2130212796 @default.
- W4386827340 cites W2134673975 @default.
- W4386827340 cites W2142635246 @default.
- W4386827340 cites W2148087508 @default.
- W4386827340 cites W2158331151 @default.
- W4386827340 cites W2163204284 @default.
- W4386827340 cites W2164377108 @default.
- W4386827340 cites W2465241486 @default.
- W4386827340 cites W2617728117 @default.
- W4386827340 cites W264613207 @default.
- W4386827340 cites W2766713736 @default.
- W4386827340 cites W2769999991 @default.
- W4386827340 cites W3211137328 @default.
- W4386827340 cites W4211081235 @default.
- W4386827340 cites W4234698323 @default.
- W4386827340 cites W4243601474 @default.
- W4386827340 cites W4294690564 @default.
- W4386827340 doi "https://doi.org/10.1016/j.compchemeng.2023.108429" @default.
- W4386827340 hasPublicationYear "2023" @default.
- W4386827340 type Work @default.
- W4386827340 citedByCount "0" @default.
- W4386827340 countsByYear W43868273402023 @default.
- W4386827340 crossrefType "journal-article" @default.
- W4386827340 hasAuthorship W4386827340A5005725288 @default.
- W4386827340 hasAuthorship W4386827340A5033056557 @default.
- W4386827340 hasAuthorship W4386827340A5070596945 @default.
- W4386827340 hasAuthorship W4386827340A5072676429 @default.
- W4386827340 hasConcept C105795698 @default.
- W4386827340 hasConcept C111919701 @default.
- W4386827340 hasConcept C116834253 @default.
- W4386827340 hasConcept C119247159 @default.
- W4386827340 hasConcept C124101348 @default.
- W4386827340 hasConcept C124223222 @default.
- W4386827340 hasConcept C126255220 @default.
- W4386827340 hasConcept C127413603 @default.
- W4386827340 hasConcept C133731056 @default.
- W4386827340 hasConcept C154945302 @default.
- W4386827340 hasConcept C155386361 @default.
- W4386827340 hasConcept C157286648 @default.
- W4386827340 hasConcept C172205157 @default.
- W4386827340 hasConcept C173801870 @default.
- W4386827340 hasConcept C175291020 @default.
- W4386827340 hasConcept C185429906 @default.
- W4386827340 hasConcept C199360897 @default.
- W4386827340 hasConcept C26713055 @default.
- W4386827340 hasConcept C2775924081 @default.
- W4386827340 hasConcept C2780009758 @default.
- W4386827340 hasConcept C33923547 @default.
- W4386827340 hasConcept C41008148 @default.
- W4386827340 hasConcept C42360764 @default.
- W4386827340 hasConcept C47446073 @default.
- W4386827340 hasConcept C59822182 @default.
- W4386827340 hasConcept C86803240 @default.
- W4386827340 hasConcept C98045186 @default.
- W4386827340 hasConceptScore W4386827340C105795698 @default.
- W4386827340 hasConceptScore W4386827340C111919701 @default.
- W4386827340 hasConceptScore W4386827340C116834253 @default.
- W4386827340 hasConceptScore W4386827340C119247159 @default.
- W4386827340 hasConceptScore W4386827340C124101348 @default.
- W4386827340 hasConceptScore W4386827340C124223222 @default.
- W4386827340 hasConceptScore W4386827340C126255220 @default.
- W4386827340 hasConceptScore W4386827340C127413603 @default.
- W4386827340 hasConceptScore W4386827340C133731056 @default.
- W4386827340 hasConceptScore W4386827340C154945302 @default.
- W4386827340 hasConceptScore W4386827340C155386361 @default.