Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387035718> ?p ?o ?g. }
- W4387035718 endingPage "121864" @default.
- W4387035718 startingPage "121864" @default.
- W4387035718 abstract "Many studies have focused on decision support systems that enhance both the efficiency and safety of driving. They have also explored the potential of real-time psychological data and machine learning in predicting drivers’ cognitive state, such as their fatigue levels, drowsiness, or workload. However, few studies have investigated prediction of driving goals as a cognitive outcome. Early prediction plays an essential role in providing active decision support during driving events under time pressure conditions. In this study, machine learning algorithms and features associated with different phases of decision-making were used to predict two common driving goals: defensive driving in emerging scenarios and urgent reactions in nonroutine scenarios. The effects of perception-, reflex-, control-, and kinetic-related features and how they contribute to prediction in the context of decision-making were analyzed. A total of 49 individuals were recruited to complete simulated driving tasks, with 237 events of defensive driving and 271 events of urgent reactions identified. The results revealed premium recall with a naïve Bayes classifier, indicating the onset of decision-making, with extreme gradient boosting and random forests exhibiting superior precision in predicting defensive driving and urgent reactions, respectively. Additionally, the cutoff of the initial 0.4 seconds of the events was identified. Before the cutoff, the leading features were reflex- and control-related features, which were the drivers’ immediate reactions before scenario evaluation and goal determination. These leading features contributed to superior prediction results for the two types of driving goals, indicating the likelihood of early detection. After the cutoff, model performance decreased, and lagging features came into play. These lagging features comprised perception- and kinetic-related features, reflecting observation of cues and outcomes of inputs delivered to vehicles. In the first 2 seconds, predictive models recovered and stabilized." @default.
- W4387035718 created "2023-09-27" @default.
- W4387035718 creator A5036619533 @default.
- W4387035718 date "2024-03-01" @default.
- W4387035718 modified "2023-10-11" @default.
- W4387035718 title "A machine learning study for predicting driver goals in contingencies with leading and lagging features during goal determination" @default.
- W4387035718 cites W1974690389 @default.
- W4387035718 cites W2020231959 @default.
- W4387035718 cites W2023159994 @default.
- W4387035718 cites W2071907629 @default.
- W4387035718 cites W2074331253 @default.
- W4387035718 cites W2133394319 @default.
- W4387035718 cites W2151226872 @default.
- W4387035718 cites W2153220949 @default.
- W4387035718 cites W2174896420 @default.
- W4387035718 cites W2540183746 @default.
- W4387035718 cites W2581487517 @default.
- W4387035718 cites W2590766922 @default.
- W4387035718 cites W2620977360 @default.
- W4387035718 cites W2887924675 @default.
- W4387035718 cites W2899213186 @default.
- W4387035718 cites W2919609362 @default.
- W4387035718 cites W2943527661 @default.
- W4387035718 cites W2946434820 @default.
- W4387035718 cites W2950261310 @default.
- W4387035718 cites W2967564727 @default.
- W4387035718 cites W2970913305 @default.
- W4387035718 cites W2973614070 @default.
- W4387035718 cites W2999995229 @default.
- W4387035718 cites W3019688365 @default.
- W4387035718 cites W3022039961 @default.
- W4387035718 cites W3090789868 @default.
- W4387035718 cites W3110877594 @default.
- W4387035718 cites W3111445687 @default.
- W4387035718 cites W3115513794 @default.
- W4387035718 cites W3130816426 @default.
- W4387035718 cites W3138963424 @default.
- W4387035718 cites W3184621130 @default.
- W4387035718 cites W4200343312 @default.
- W4387035718 cites W4223559499 @default.
- W4387035718 cites W4224216083 @default.
- W4387035718 cites W4225147796 @default.
- W4387035718 cites W4293571992 @default.
- W4387035718 doi "https://doi.org/10.1016/j.eswa.2023.121864" @default.
- W4387035718 hasPublicationYear "2024" @default.
- W4387035718 type Work @default.
- W4387035718 citedByCount "0" @default.
- W4387035718 crossrefType "journal-article" @default.
- W4387035718 hasAuthorship W4387035718A5036619533 @default.
- W4387035718 hasConcept C105795698 @default.
- W4387035718 hasConcept C111919701 @default.
- W4387035718 hasConcept C119857082 @default.
- W4387035718 hasConcept C121332964 @default.
- W4387035718 hasConcept C12267149 @default.
- W4387035718 hasConcept C151730666 @default.
- W4387035718 hasConcept C154945302 @default.
- W4387035718 hasConcept C15744967 @default.
- W4387035718 hasConcept C169258074 @default.
- W4387035718 hasConcept C169760540 @default.
- W4387035718 hasConcept C169900460 @default.
- W4387035718 hasConcept C197640229 @default.
- W4387035718 hasConcept C26760741 @default.
- W4387035718 hasConcept C2776962539 @default.
- W4387035718 hasConcept C2778217198 @default.
- W4387035718 hasConcept C2778476105 @default.
- W4387035718 hasConcept C2779343474 @default.
- W4387035718 hasConcept C33923547 @default.
- W4387035718 hasConcept C41008148 @default.
- W4387035718 hasConcept C52001869 @default.
- W4387035718 hasConcept C62520636 @default.
- W4387035718 hasConcept C86803240 @default.
- W4387035718 hasConcept C95623464 @default.
- W4387035718 hasConceptScore W4387035718C105795698 @default.
- W4387035718 hasConceptScore W4387035718C111919701 @default.
- W4387035718 hasConceptScore W4387035718C119857082 @default.
- W4387035718 hasConceptScore W4387035718C121332964 @default.
- W4387035718 hasConceptScore W4387035718C12267149 @default.
- W4387035718 hasConceptScore W4387035718C151730666 @default.
- W4387035718 hasConceptScore W4387035718C154945302 @default.
- W4387035718 hasConceptScore W4387035718C15744967 @default.
- W4387035718 hasConceptScore W4387035718C169258074 @default.
- W4387035718 hasConceptScore W4387035718C169760540 @default.
- W4387035718 hasConceptScore W4387035718C169900460 @default.
- W4387035718 hasConceptScore W4387035718C197640229 @default.
- W4387035718 hasConceptScore W4387035718C26760741 @default.
- W4387035718 hasConceptScore W4387035718C2776962539 @default.
- W4387035718 hasConceptScore W4387035718C2778217198 @default.
- W4387035718 hasConceptScore W4387035718C2778476105 @default.
- W4387035718 hasConceptScore W4387035718C2779343474 @default.
- W4387035718 hasConceptScore W4387035718C33923547 @default.
- W4387035718 hasConceptScore W4387035718C41008148 @default.
- W4387035718 hasConceptScore W4387035718C52001869 @default.
- W4387035718 hasConceptScore W4387035718C62520636 @default.
- W4387035718 hasConceptScore W4387035718C86803240 @default.
- W4387035718 hasConceptScore W4387035718C95623464 @default.
- W4387035718 hasFunder F4320322795 @default.
- W4387035718 hasLocation W43870357181 @default.
- W4387035718 hasOpenAccess W4387035718 @default.