Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387138816> ?p ?o ?g. }
- W4387138816 endingPage "259" @default.
- W4387138816 startingPage "231" @default.
- W4387138816 abstract "Human Activity Recognition (HAR) is a branch of computer science that uses raw time-series data information from embedded smartphone sensors and wearable devices to infer human actions. It has aroused considerable interest in various smart home contexts, particularly for constantly monitoring human behavior in an ecologically friendly atmosphere for elderly people and rehabilitation. Data collection, feature extraction from noise and distortion, feature selection, and pre-processing and categorization are among the operating components of a typical HAR system. Extraction of feature and selection strategies have recently been developed using cutting-edge approaches and traditional machine learning classifiers. The majority of the solutions, on the other hand, rely on simple feature extraction algorithms that are unable to detect complex behaviors. Deep learning techniques are often utilized in different HAR approaches to recover features and classification swiftly because of the introduction and development of vast computing resources. The vast majority of solutions, on the other hand, depend on simplistic feature extraction algorithms incapable of recognizing complicated behaviors. Due to advancements in high computational capabilities, deep learning algorithms are now often utilized in HAR methods to efficiently extract meaningful features which can successfully categorize sensor data. In this chapter, we present a hybrid deep learning-based classification model comprising of Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM), which is named CNN-LSTM. The proposed hybrid deep learning model has been tested over three benchmark HAR datasets: MHEALTH, OPPORTUNITY, and HARTH. On the aforementioned datasets, the proposed hybrid model obtained 99.07%, 95.2%, and 94.68% classification accuracies, respectively, which is quite impressive. The source code of the proposed work can be accessed by using the following link: https://github.com/DSharma05/Human-Activity-Recognition-using-hybrid-Deep-learning-approach ." @default.
- W4387138816 created "2023-09-29" @default.
- W4387138816 creator A5011802762 @default.
- W4387138816 creator A5030136105 @default.
- W4387138816 creator A5035379282 @default.
- W4387138816 creator A5054494073 @default.
- W4387138816 creator A5055227045 @default.
- W4387138816 date "2023-01-01" @default.
- W4387138816 modified "2023-10-18" @default.
- W4387138816 title "A Hybrid Deep Learning-Based Approach for Human Activity Recognition Using Wearable Sensors" @default.
- W4387138816 cites W1852728451 @default.
- W4387138816 cites W2126511896 @default.
- W4387138816 cites W2247209766 @default.
- W4387138816 cites W2270470215 @default.
- W4387138816 cites W2342792048 @default.
- W4387138816 cites W2736191430 @default.
- W4387138816 cites W2893019778 @default.
- W4387138816 cites W2899386415 @default.
- W4387138816 cites W2954709787 @default.
- W4387138816 cites W2963993350 @default.
- W4387138816 cites W2964350365 @default.
- W4387138816 cites W2966450377 @default.
- W4387138816 cites W2998376881 @default.
- W4387138816 cites W3011785450 @default.
- W4387138816 cites W3013334351 @default.
- W4387138816 cites W3014026011 @default.
- W4387138816 cites W3017424189 @default.
- W4387138816 cites W3021673939 @default.
- W4387138816 cites W3027425326 @default.
- W4387138816 cites W3029155803 @default.
- W4387138816 cites W3044454104 @default.
- W4387138816 cites W3046246759 @default.
- W4387138816 cites W3048477139 @default.
- W4387138816 cites W3048952742 @default.
- W4387138816 cites W3066888720 @default.
- W4387138816 cites W3080948963 @default.
- W4387138816 cites W3081111248 @default.
- W4387138816 cites W3095371008 @default.
- W4387138816 cites W3128348732 @default.
- W4387138816 cites W3133605945 @default.
- W4387138816 cites W3155197580 @default.
- W4387138816 cites W3183335166 @default.
- W4387138816 cites W3185580468 @default.
- W4387138816 cites W3205572382 @default.
- W4387138816 cites W3214868319 @default.
- W4387138816 cites W3216012550 @default.
- W4387138816 cites W4283359809 @default.
- W4387138816 cites W4285079306 @default.
- W4387138816 cites W4285728951 @default.
- W4387138816 cites W4287762287 @default.
- W4387138816 doi "https://doi.org/10.1007/978-3-031-40688-1_11" @default.
- W4387138816 hasPublicationYear "2023" @default.
- W4387138816 type Work @default.
- W4387138816 citedByCount "0" @default.
- W4387138816 crossrefType "book-chapter" @default.
- W4387138816 hasAuthorship W4387138816A5011802762 @default.
- W4387138816 hasAuthorship W4387138816A5030136105 @default.
- W4387138816 hasAuthorship W4387138816A5035379282 @default.
- W4387138816 hasAuthorship W4387138816A5054494073 @default.
- W4387138816 hasAuthorship W4387138816A5055227045 @default.
- W4387138816 hasConcept C108583219 @default.
- W4387138816 hasConcept C119857082 @default.
- W4387138816 hasConcept C121687571 @default.
- W4387138816 hasConcept C13280743 @default.
- W4387138816 hasConcept C138885662 @default.
- W4387138816 hasConcept C148483581 @default.
- W4387138816 hasConcept C149635348 @default.
- W4387138816 hasConcept C150594956 @default.
- W4387138816 hasConcept C153180895 @default.
- W4387138816 hasConcept C154945302 @default.
- W4387138816 hasConcept C185798385 @default.
- W4387138816 hasConcept C205649164 @default.
- W4387138816 hasConcept C2776401178 @default.
- W4387138816 hasConcept C41008148 @default.
- W4387138816 hasConcept C41895202 @default.
- W4387138816 hasConcept C52622490 @default.
- W4387138816 hasConcept C54290928 @default.
- W4387138816 hasConcept C81363708 @default.
- W4387138816 hasConceptScore W4387138816C108583219 @default.
- W4387138816 hasConceptScore W4387138816C119857082 @default.
- W4387138816 hasConceptScore W4387138816C121687571 @default.
- W4387138816 hasConceptScore W4387138816C13280743 @default.
- W4387138816 hasConceptScore W4387138816C138885662 @default.
- W4387138816 hasConceptScore W4387138816C148483581 @default.
- W4387138816 hasConceptScore W4387138816C149635348 @default.
- W4387138816 hasConceptScore W4387138816C150594956 @default.
- W4387138816 hasConceptScore W4387138816C153180895 @default.
- W4387138816 hasConceptScore W4387138816C154945302 @default.
- W4387138816 hasConceptScore W4387138816C185798385 @default.
- W4387138816 hasConceptScore W4387138816C205649164 @default.
- W4387138816 hasConceptScore W4387138816C2776401178 @default.
- W4387138816 hasConceptScore W4387138816C41008148 @default.
- W4387138816 hasConceptScore W4387138816C41895202 @default.
- W4387138816 hasConceptScore W4387138816C52622490 @default.
- W4387138816 hasConceptScore W4387138816C54290928 @default.
- W4387138816 hasConceptScore W4387138816C81363708 @default.
- W4387138816 hasLocation W43871388161 @default.
- W4387138816 hasOpenAccess W4387138816 @default.