Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387643472> ?p ?o ?g. }
- W4387643472 endingPage "100250" @default.
- W4387643472 startingPage "100250" @default.
- W4387643472 abstract "For a wide spectrum of agricultural market participants, building price forecasts of various agricultural commodities has always been a vital project. In this work, we approach this problem for the weekly wholesale price index of edible oil in the Chinese market during a ten-year period of January 1, 2010 – January 3, 2020 through the exploration of the non-linear auto-regressive neural network as the forecast model. Specifically, we investigate forecast performance stemming from different settings of models, which include considerations of training algorithms, hidden neurons, delays, and how the data are segmented. With the analysis, a relatively simple model is constructed and it produces performance that is rather accurate and stable. Particularly, performance in terms of relative root mean square errors is 2.80%, 3.01%, and 1.80% for training, validation, and testing, respectively. Forecast results here could be utilized as part of technical analysis and/or combined with other fundamental forecasts as part of policy analysis." @default.
- W4387643472 created "2023-10-15" @default.
- W4387643472 creator A5019106763 @default.
- W4387643472 creator A5092215807 @default.
- W4387643472 date "2023-10-01" @default.
- W4387643472 modified "2023-10-15" @default.
- W4387643472 title "Edible oil wholesale price forecasts via the neural network" @default.
- W4387643472 cites W1507259579 @default.
- W4387643472 cites W1559507539 @default.
- W4387643472 cites W1973511951 @default.
- W4387643472 cites W1987587356 @default.
- W4387643472 cites W2000842688 @default.
- W4387643472 cites W2029095813 @default.
- W4387643472 cites W2035698927 @default.
- W4387643472 cites W2042577832 @default.
- W4387643472 cites W2051023772 @default.
- W4387643472 cites W2051812123 @default.
- W4387643472 cites W2056252523 @default.
- W4387643472 cites W2056991698 @default.
- W4387643472 cites W2070034048 @default.
- W4387643472 cites W2082879877 @default.
- W4387643472 cites W2087070363 @default.
- W4387643472 cites W2091280833 @default.
- W4387643472 cites W2092155530 @default.
- W4387643472 cites W2146552111 @default.
- W4387643472 cites W2155482699 @default.
- W4387643472 cites W2157490264 @default.
- W4387643472 cites W2176313025 @default.
- W4387643472 cites W2189220475 @default.
- W4387643472 cites W2256578114 @default.
- W4387643472 cites W2418170192 @default.
- W4387643472 cites W2460483353 @default.
- W4387643472 cites W2549986406 @default.
- W4387643472 cites W2599150318 @default.
- W4387643472 cites W2765358053 @default.
- W4387643472 cites W2774610454 @default.
- W4387643472 cites W2781057311 @default.
- W4387643472 cites W2783861622 @default.
- W4387643472 cites W2899289605 @default.
- W4387643472 cites W2899384503 @default.
- W4387643472 cites W2938308298 @default.
- W4387643472 cites W2945362021 @default.
- W4387643472 cites W2948336928 @default.
- W4387643472 cites W2969376125 @default.
- W4387643472 cites W2979950223 @default.
- W4387643472 cites W2999391860 @default.
- W4387643472 cites W2999700983 @default.
- W4387643472 cites W3000215093 @default.
- W4387643472 cites W3013187307 @default.
- W4387643472 cites W3048130551 @default.
- W4387643472 cites W3081889057 @default.
- W4387643472 cites W3093162609 @default.
- W4387643472 cites W3111115317 @default.
- W4387643472 cites W3112756409 @default.
- W4387643472 cites W3112900574 @default.
- W4387643472 cites W3120311669 @default.
- W4387643472 cites W3121242150 @default.
- W4387643472 cites W3122003889 @default.
- W4387643472 cites W3124599370 @default.
- W4387643472 cites W3128601027 @default.
- W4387643472 cites W3148991373 @default.
- W4387643472 cites W3174756049 @default.
- W4387643472 cites W3185539831 @default.
- W4387643472 cites W3201253225 @default.
- W4387643472 cites W3211307632 @default.
- W4387643472 cites W3212786384 @default.
- W4387643472 cites W3213564128 @default.
- W4387643472 cites W3214071605 @default.
- W4387643472 cites W4206949015 @default.
- W4387643472 cites W4213278807 @default.
- W4387643472 cites W4220955444 @default.
- W4387643472 cites W4224064786 @default.
- W4387643472 cites W4229336759 @default.
- W4387643472 cites W4280517373 @default.
- W4387643472 cites W4280589199 @default.
- W4387643472 cites W4285587037 @default.
- W4387643472 cites W4289545257 @default.
- W4387643472 cites W4292473116 @default.
- W4387643472 cites W4292671038 @default.
- W4387643472 cites W4293089906 @default.
- W4387643472 cites W4295015659 @default.
- W4387643472 cites W4295927207 @default.
- W4387643472 cites W4306893511 @default.
- W4387643472 cites W4308630894 @default.
- W4387643472 cites W4309047178 @default.
- W4387643472 cites W4309118657 @default.
- W4387643472 cites W4311045476 @default.
- W4387643472 cites W4311733635 @default.
- W4387643472 cites W4312220607 @default.
- W4387643472 cites W4313898027 @default.
- W4387643472 cites W4320883182 @default.
- W4387643472 cites W4321257424 @default.
- W4387643472 cites W4361011475 @default.
- W4387643472 cites W4362518735 @default.
- W4387643472 cites W4365149884 @default.
- W4387643472 cites W4378594122 @default.
- W4387643472 cites W4378698932 @default.
- W4387643472 cites W4380085124 @default.