Matches in SemOpenAlex for { <https://semopenalex.org/work/W761507973> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W761507973 abstract "DETECTING AND CORRECTING BATCH EFFECTS IN HIGH-THROUGHPUT GENOMIC EXPERIMENTS By Sarah Elizabeth Reese A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University Virginia Commonwealth University, 2013 Director: Kellie J. Archer, Ph.D., Associate Professor, Department of Biostatistics; Director, VCU Massey Cancer Center Biostatistics Shared Resource Batch effects are due to probe-specific systematic variation between groups of samples (batches) resulting from experimental features that are not of biological interest. Principal components analysis (PCA) is commonly used as a visual tool to determine whether batch effects exist after applying a global normalization method. However, PCA yields linear combinations of the variables that contribute maximum variance and thus will not necessarily detect batch effects if they are not the largest source of variability in the data. We present an extension of principal components analysis to quantify the existence of batch effects, called guided PCA (gPCA). We describe a test statistic that uses gPCA to test if a batch effect exists. We apply our proposed test statistic derived using gPCA to simulated data and to two copy number variation case studies: the first study consisted of 614 samples from a breast cancer family study using Illumina Human 660 bead-chip arrays whereas the second case study consisted of 703 samples from a family blood pressure study that used Affymetrix SNP Array 6.0. We demonstrate that our statistic has good statistical properties and is able to identify significant batch effects in two copy number variation case studies. We further compare existing batch effect correction methods and apply gPCA to test their effectiveness. We conclude that our novel statistic that utilizes guided principal components analysis to identify whether batch effects exist in high-throughput genomic data is effective. Although our examples pertain to copy number data, gPCA is general and can be used on other data types as well." @default.
- W761507973 created "2016-06-24" @default.
- W761507973 creator A5020349673 @default.
- W761507973 date "2013-01-01" @default.
- W761507973 modified "2023-09-23" @default.
- W761507973 title "Detecting and Correcting Batch Effects in High-Throughput Genomic Experiments" @default.
- W761507973 cites W108176572 @default.
- W761507973 cites W1480595150 @default.
- W761507973 cites W1488639150 @default.
- W761507973 cites W1555148682 @default.
- W761507973 cites W190205155 @default.
- W761507973 cites W1966701961 @default.
- W761507973 cites W1986849266 @default.
- W761507973 cites W1996353320 @default.
- W761507973 cites W2007527993 @default.
- W761507973 cites W2024103316 @default.
- W761507973 cites W2029555993 @default.
- W761507973 cites W2049446938 @default.
- W761507973 cites W2050886653 @default.
- W761507973 cites W2053478107 @default.
- W761507973 cites W2054294074 @default.
- W761507973 cites W2099079147 @default.
- W761507973 cites W2107665951 @default.
- W761507973 cites W2108947463 @default.
- W761507973 cites W2110065044 @default.
- W761507973 cites W2112440119 @default.
- W761507973 cites W2113878188 @default.
- W761507973 cites W2120865735 @default.
- W761507973 cites W2127824649 @default.
- W761507973 cites W2135714004 @default.
- W761507973 cites W2137499573 @default.
- W761507973 cites W2138550913 @default.
- W761507973 cites W2138756513 @default.
- W761507973 cites W2139345901 @default.
- W761507973 cites W2147013674 @default.
- W761507973 cites W2148541040 @default.
- W761507973 cites W2150542002 @default.
- W761507973 cites W2150926065 @default.
- W761507973 cites W2160231971 @default.
- W761507973 cites W2169353806 @default.
- W761507973 cites W2170989872 @default.
- W761507973 doi "https://doi.org/10.25772/a7n4-6136" @default.
- W761507973 hasPublicationYear "2013" @default.
- W761507973 type Work @default.
- W761507973 sameAs 761507973 @default.
- W761507973 citedByCount "0" @default.
- W761507973 crossrefType "journal-article" @default.
- W761507973 hasAuthorship W761507973A5020349673 @default.
- W761507973 hasConcept C105795698 @default.
- W761507973 hasConcept C124101348 @default.
- W761507973 hasConcept C138816342 @default.
- W761507973 hasConcept C140556311 @default.
- W761507973 hasConcept C159110408 @default.
- W761507973 hasConcept C169857963 @default.
- W761507973 hasConcept C27438332 @default.
- W761507973 hasConcept C33923547 @default.
- W761507973 hasConcept C41008148 @default.
- W761507973 hasConcept C71924100 @default.
- W761507973 hasConcept C87007009 @default.
- W761507973 hasConcept C89128539 @default.
- W761507973 hasConceptScore W761507973C105795698 @default.
- W761507973 hasConceptScore W761507973C124101348 @default.
- W761507973 hasConceptScore W761507973C138816342 @default.
- W761507973 hasConceptScore W761507973C140556311 @default.
- W761507973 hasConceptScore W761507973C159110408 @default.
- W761507973 hasConceptScore W761507973C169857963 @default.
- W761507973 hasConceptScore W761507973C27438332 @default.
- W761507973 hasConceptScore W761507973C33923547 @default.
- W761507973 hasConceptScore W761507973C41008148 @default.
- W761507973 hasConceptScore W761507973C71924100 @default.
- W761507973 hasConceptScore W761507973C87007009 @default.
- W761507973 hasConceptScore W761507973C89128539 @default.
- W761507973 hasLocation W7615079731 @default.
- W761507973 hasOpenAccess W761507973 @default.
- W761507973 hasPrimaryLocation W7615079731 @default.
- W761507973 hasRelatedWork W2555502666 @default.
- W761507973 hasRelatedWork W2572972074 @default.
- W761507973 hasRelatedWork W2761802050 @default.
- W761507973 hasRelatedWork W2905317377 @default.
- W761507973 hasRelatedWork W3038983121 @default.
- W761507973 isParatext "false" @default.
- W761507973 isRetracted "false" @default.
- W761507973 magId "761507973" @default.
- W761507973 workType "article" @default.