Matches in SemOpenAlex for { <https://semopenalex.org/work/W956374238> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W956374238 endingPage "1566" @default.
- W956374238 startingPage "1553" @default.
- W956374238 abstract "Fine particulate matter ([Formula: see text]) has a considerable impact on human health, the environment and climate change. It is estimated that with better predictions, US$9 billion can be saved over a 10-year period in the USA (State of the science fact sheet air quality. http://www.noaa.gov/factsheets/new, 2012). Therefore, it is crucial to keep developing models and systems that can accurately predict the concentration of major air pollutants. In this paper, our target is to predict [Formula: see text] concentration in Japan using environmental monitoring data obtained from physical sensors with improved accuracy over the currently employed prediction models. To do so, we propose a deep recurrent neural network (DRNN) that is enhanced with a novel pre-training method using auto-encoder especially designed for time series prediction. Additionally, sensors selection is performed within DRNN without harming the accuracy of the predictions by taking advantage of the sparsity found in the network. The numerical experiments show that DRNN with our proposed pre-training method is superior than when using a canonical and a state-of-the-art auto-encoder training method when applied to time series prediction. The experiments confirm that when compared against the [Formula: see text] prediction system VENUS (National Institute for Environmental Studies. Visual Atmospheric Environment Utility System. http://envgis5.nies.go.jp/osenyosoku/, 2014), our technique improves the accuracy of [Formula: see text] concentration level predictions that are being reported in Japan." @default.
- W956374238 created "2016-06-24" @default.
- W956374238 creator A5004254506 @default.
- W956374238 creator A5033744547 @default.
- W956374238 creator A5048072689 @default.
- W956374238 date "2015-06-26" @default.
- W956374238 modified "2023-10-16" @default.
- W956374238 title "Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5" @default.
- W956374238 cites W1599300385 @default.
- W956374238 cites W16016350 @default.
- W956374238 cites W1971402834 @default.
- W956374238 cites W1973028175 @default.
- W956374238 cites W1997829466 @default.
- W956374238 cites W1999444602 @default.
- W956374238 cites W2017257315 @default.
- W956374238 cites W2025768430 @default.
- W956374238 cites W2038384979 @default.
- W956374238 cites W2047084930 @default.
- W956374238 cites W2056206083 @default.
- W956374238 cites W2070922095 @default.
- W956374238 cites W2083022762 @default.
- W956374238 cites W2086843697 @default.
- W956374238 cites W2087673205 @default.
- W956374238 cites W2098307847 @default.
- W956374238 cites W2100495367 @default.
- W956374238 cites W2108563286 @default.
- W956374238 cites W2122825543 @default.
- W956374238 cites W2135470165 @default.
- W956374238 cites W2136922672 @default.
- W956374238 cites W2153787847 @default.
- W956374238 cites W2153947102 @default.
- W956374238 cites W2296073425 @default.
- W956374238 cites W4234698323 @default.
- W956374238 cites W4238404964 @default.
- W956374238 doi "https://doi.org/10.1007/s00521-015-1955-3" @default.
- W956374238 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4920860" @default.
- W956374238 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27418719" @default.
- W956374238 hasPublicationYear "2015" @default.
- W956374238 type Work @default.
- W956374238 sameAs 956374238 @default.
- W956374238 citedByCount "173" @default.
- W956374238 countsByYear W9563742382016 @default.
- W956374238 countsByYear W9563742382017 @default.
- W956374238 countsByYear W9563742382018 @default.
- W956374238 countsByYear W9563742382019 @default.
- W956374238 countsByYear W9563742382020 @default.
- W956374238 countsByYear W9563742382021 @default.
- W956374238 countsByYear W9563742382022 @default.
- W956374238 countsByYear W9563742382023 @default.
- W956374238 crossrefType "journal-article" @default.
- W956374238 hasAuthorship W956374238A5004254506 @default.
- W956374238 hasAuthorship W956374238A5033744547 @default.
- W956374238 hasAuthorship W956374238A5048072689 @default.
- W956374238 hasBestOaLocation W9563742381 @default.
- W956374238 hasConcept C101738243 @default.
- W956374238 hasConcept C108583219 @default.
- W956374238 hasConcept C119857082 @default.
- W956374238 hasConcept C124101348 @default.
- W956374238 hasConcept C151406439 @default.
- W956374238 hasConcept C154945302 @default.
- W956374238 hasConcept C41008148 @default.
- W956374238 hasConcept C50644808 @default.
- W956374238 hasConceptScore W956374238C101738243 @default.
- W956374238 hasConceptScore W956374238C108583219 @default.
- W956374238 hasConceptScore W956374238C119857082 @default.
- W956374238 hasConceptScore W956374238C124101348 @default.
- W956374238 hasConceptScore W956374238C151406439 @default.
- W956374238 hasConceptScore W956374238C154945302 @default.
- W956374238 hasConceptScore W956374238C41008148 @default.
- W956374238 hasConceptScore W956374238C50644808 @default.
- W956374238 hasIssue "6" @default.
- W956374238 hasLocation W9563742381 @default.
- W956374238 hasLocation W9563742382 @default.
- W956374238 hasLocation W9563742383 @default.
- W956374238 hasLocation W9563742384 @default.
- W956374238 hasOpenAccess W956374238 @default.
- W956374238 hasPrimaryLocation W9563742381 @default.
- W956374238 hasRelatedWork W2567271240 @default.
- W956374238 hasRelatedWork W2788487394 @default.
- W956374238 hasRelatedWork W2904372345 @default.
- W956374238 hasRelatedWork W2922457425 @default.
- W956374238 hasRelatedWork W2989980351 @default.
- W956374238 hasRelatedWork W3044458868 @default.
- W956374238 hasRelatedWork W4213225422 @default.
- W956374238 hasRelatedWork W4250304930 @default.
- W956374238 hasRelatedWork W4289656111 @default.
- W956374238 hasRelatedWork W4309045103 @default.
- W956374238 hasVolume "27" @default.
- W956374238 isParatext "false" @default.
- W956374238 isRetracted "false" @default.
- W956374238 magId "956374238" @default.
- W956374238 workType "article" @default.