Matches in Wikidata for { <http://www.wikidata.org/entity/Q595298> ?p ?o ?g. }
- Q595298 label "層" @default.
- Q595298 label "層" @default.
- Q595298 label "층" @default.
- Q595298 altLabel "fai" @default.
- Q595298 altLabel "feix (matemàtiques)" @default.
- Q595298 altLabel "fexes" @default.
- Q595298 altLabel "snop" @default.
- Q595298 altLabel "大域切断関手" @default.
- Q595298 altLabel "大域的切断" @default.
- Q595298 altLabel "摩天楼層" @default.
- Q595298 prefLabel "Garbe" @default.
- Q595298 prefLabel "bó" @default.
- Q595298 prefLabel "deste" @default.
- Q595298 prefLabel "faisceau" @default.
- Q595298 prefLabel "fascicul" @default.
- Q595298 prefLabel "fascio" @default.
- Q595298 prefLabel "fascis" @default.
- Q595298 prefLabel "feix" @default.
- Q595298 prefLabel "feixe" @default.
- Q595298 prefLabel "feixe" @default.
- Q595298 prefLabel "feixe" @default.
- Q595298 prefLabel "fexe" @default.
- Q595298 prefLabel "garbo" @default.
- Q595298 prefLabel "haz" @default.
- Q595298 prefLabel "knippe" @default.
- Q595298 prefLabel "knippe" @default.
- Q595298 prefLabel "kärve" @default.
- Q595298 prefLabel "kéve" @default.
- Q595298 prefLabel "lyhde" @default.
- Q595298 prefLabel "schoof" @default.
- Q595298 prefLabel "sheaf" @default.
- Q595298 prefLabel "sheaf" @default.
- Q595298 prefLabel "sheaf" @default.
- Q595298 prefLabel "snop" @default.
- Q595298 prefLabel "snop" @default.
- Q595298 prefLabel "snop" @default.
- Q595298 prefLabel "snop" @default.
- Q595298 prefLabel "sorta" @default.
- Q595298 prefLabel "δεμάτιο" @default.
- Q595298 prefLabel "пучок" @default.
- Q595298 prefLabel "пучок" @default.
- Q595298 prefLabel "пучок" @default.
- Q595298 prefLabel "пучок" @default.
- Q595298 prefLabel "сноп" @default.
- Q595298 prefLabel "אלומה" @default.
- Q595298 prefLabel "بافه" @default.
- Q595298 prefLabel "حزمة" @default.
- Q595298 prefLabel "层 (数学)" @default.
- Q595298 prefLabel "层" @default.
- Q595298 prefLabel "層" @default.
- Q595298 prefLabel "層" @default.
- Q595298 prefLabel "層" @default.
- Q595298 prefLabel "층" @default.
- Q595298 P10283 Q595298-CB38833B-1AAA-45A0-BF93-7F31AA7C0BD3 @default.
- Q595298 P1417 Q595298-10FD220F-646C-455D-A5B0-1D4C9CD5A01E @default.
- Q595298 P1552 Q595298-39342c71-455e-ad01-4c2a-ed6051cbb8eb @default.
- Q595298 P1552 Q595298-4515193d-4ec4-4d0a-088a-f91e0f7d7a62 @default.
- Q595298 P1889 Q595298-2cd7a1ea-4ebd-1f96-cb96-4a68ae600579 @default.
- Q595298 P244 Q595298-B07605CF-8BC5-4289-B69A-C1A70064B1AC @default.
- Q595298 P2534 Q595298-1da12004-411e-540b-b724-054ba4f793c6 @default.
- Q595298 P2579 Q595298-e777e5d4-4d3b-49b9-6b60-d6a8db236b2e @default.
- Q595298 P279 Q595298-2711aa2e-4056-1818-78c4-a8e0cc4482fa @default.
- Q595298 P279 Q595298-cb26c82b-42a3-f2ff-f38a-a085315fd23a @default.
- Q595298 P2812 Q595298-7F00E45A-773E-4CB1-8FC6-54698DE00BC0 @default.
- Q595298 P4215 Q595298-2b5fe0dc-4e95-cd60-978e-7b111b7667d4 @default.
- Q595298 P5008 Q595298-05550735-478A-4713-95C3-21A51CB8E0F2 @default.
- Q595298 P575 Q595298-f95e328f-431b-9f77-c2b2-8cb3601eb897 @default.
- Q595298 P61 Q595298-2ffa5cc2-4d81-1ea5-373b-357fb5dbf466 @default.
- Q595298 P6104 Q595298-00479D5D-9D82-4D1C-985B-B296B73F853B @default.
- Q595298 P6366 Q595298-45E8A5C5-2DEE-47FA-B427-1C904D9A7A2B @default.
- Q595298 P6366 Q595298-687D24D7-CA6D-4FD7-A27B-B308539A37FB @default.
- Q595298 P646 Q595298-4E89ADEC-66A8-45AB-8CB7-BB9B7B8294B1 @default.
- Q595298 P6781 Q595298-8d223668-4f59-52c4-749d-a794e7ea1a9d @default.
- Q595298 P7554 Q595298-6de5bc1e-43b2-a7d3-8a41-9c9016b86f93 @default.
- Q595298 P7726 Q595298-f6caba8c-4c83-4517-0026-6018280ce7bb @default.
- Q595298 P8189 Q595298-BE57C516-BAB7-4AC7-A5A9-88E7EF153B0A @default.
- Q595298 P244 sh85121203 @default.
- Q595298 P6366 118497674 @default.
- Q595298 P6366 4017995 @default.
- Q595298 P10283 "C4017995" @default.
- Q595298 P1417 "topic/sheaf" @default.
- Q595298 P1552 Q17103642 @default.
- Q595298 P1552 Q91783823 @default.
- Q595298 P1889 Q942040 @default.
- Q595298 P244 "sh85121203" @default.
- Q595298 P2534 "<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle {\begin{aligned}&F\colon {\rm {Open}}(X)^{\rm {op}}\to {\rm {Set}}\\&U=\bigcup _{i\in I}U_{i}\land s,t\in F(U)\land (\forall i\in I\colon s\upharpoonright U_{i}=t\upharpoonright U_{i})\implies s=t\\&U=\bigcup _{i\in I}U_{i}\land \forall i\in I\colon s_{i}\in F(U_{i})\land \forall i,j\in I\colon s_{i}\upharpoonright U_{i}\cap U_{j}=s_{j}\upharpoonright U_{i}\cap U_{j}\implies \exists s\in F(U)\forall i\in I\colon s_{i}=s\upharpoonright U_{i}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi>F</mi> <mo>:<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">t</mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>U</mi> <mo>=</mo> <munder> <mo>⋃<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> <mo>:<!-- : --></mo> <mi>s</mi> <mo stretchy="false">↾<!-- ↾ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>t</mi> <mo stretchy="false">↾<!-- ↾ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>s</mi> <mo>=</mo> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>U</mi> <mo>=</mo> <munder> <mo>⋃<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> <mo>:<!-- : --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> <mo>:<!-- : --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">↾<!-- ↾ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">↾<!-- ↾ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>s</mi> <mo>∈<!-- ∈ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> <mo>:<!-- : --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>s</mi> <mo stretchy="false">↾<!-- ↾ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&F\colon {\rm {Open}}(X)^{\rm {op}}\to {\rm {Set}}\\&U=\bigcup _{i\in I}U_{i}\land s,t\in F(U)\land (\forall i\in I\colon s\upharpoonright U_{i}=t\upharpoonright U_{i})\implies s=t\\&U=\bigcup _{i\in I}U_{i}\land \forall i\in I\colon s_{i}\in F(U_{i})\land \forall i,j\in I\colon s_{i}\upharpoonright U_{i}\cap U_{j}=s_{j}\upharpoonright U_{i}\cap U_{j}\implies \exists s\in F(U)\forall i\in I\colon s_{i}=s\upharpoonright U_{i}\end{aligned}}}</annotation> </semantics> </math>" @default.
- Q595298 P2579 Q77827144 @default.
- Q595298 P279 Q7241077 @default.
- Q595298 P279 Q7595945 @default.
- Q595298 P2812 "Sheaf" @default.
- Q595298 P4215 "sheaf" @default.
- Q595298 P5008 Q6173448 @default.
- Q595298 P575 "1947-01-01T00:00:00Z" @default.
- Q595298 P61 Q441143 @default.
- Q595298 P6104 Q8487137 @default.
- Q595298 P6366 "118497674" @default.
- Q595298 P6366 "4017995" @default.
- Q595298 P646 "/m/01kjmy" @default.
- Q595298 P6781 "Definition:Sheaf_on_Topological_Space" @default.
- Q595298 P7554 "Sheaf" @default.