Matches in SemOpenAlex for { <https://semopenalex.org/work/W1518156650> ?p ?o ?g. }
- W1518156650 endingPage "410" @default.
- W1518156650 startingPage "401" @default.
- W1518156650 abstract "Abstract We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced sensor data, in particular for anomaly detection. We split the recordings into fixed‐length patterns and show them in order to compare them over time and space using two linked views. Apart from geo‐based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities. The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering‐based view, weekly patterns in a calendar‐based view and seasonal patters in a projection‐based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach." @default.
- W1518156650 created "2016-06-24" @default.
- W1518156650 creator A5018698322 @default.
- W1518156650 creator A5021956426 @default.
- W1518156650 creator A5025616122 @default.
- W1518156650 creator A5032433963 @default.
- W1518156650 creator A5073919282 @default.
- W1518156650 creator A5078086722 @default.
- W1518156650 creator A5081290775 @default.
- W1518156650 date "2014-06-01" @default.
- W1518156650 modified "2023-10-17" @default.
- W1518156650 title "Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks" @default.
- W1518156650 cites W1576209423 @default.
- W1518156650 cites W1590611232 @default.
- W1518156650 cites W1965102791 @default.
- W1518156650 cites W1977294046 @default.
- W1518156650 cites W1993436046 @default.
- W1518156650 cites W2023883777 @default.
- W1518156650 cites W2026662997 @default.
- W1518156650 cites W2033280468 @default.
- W1518156650 cites W2073575794 @default.
- W1518156650 cites W2085864217 @default.
- W1518156650 cites W2089741653 @default.
- W1518156650 cites W2094308071 @default.
- W1518156650 cites W2098759488 @default.
- W1518156650 cites W2105246321 @default.
- W1518156650 cites W2106595237 @default.
- W1518156650 cites W2109247805 @default.
- W1518156650 cites W2117418667 @default.
- W1518156650 cites W2119452648 @default.
- W1518156650 cites W2121887149 @default.
- W1518156650 cites W2126415191 @default.
- W1518156650 cites W2138342168 @default.
- W1518156650 cites W2144994235 @default.
- W1518156650 cites W2152621157 @default.
- W1518156650 cites W2152825437 @default.
- W1518156650 cites W2161660422 @default.
- W1518156650 cites W2162825485 @default.
- W1518156650 cites W2169820258 @default.
- W1518156650 cites W4246741810 @default.
- W1518156650 doi "https://doi.org/10.1111/cgf.12396" @default.
- W1518156650 hasPublicationYear "2014" @default.
- W1518156650 type Work @default.
- W1518156650 sameAs 1518156650 @default.
- W1518156650 citedByCount "54" @default.
- W1518156650 countsByYear W15181566502015 @default.
- W1518156650 countsByYear W15181566502016 @default.
- W1518156650 countsByYear W15181566502017 @default.
- W1518156650 countsByYear W15181566502018 @default.
- W1518156650 countsByYear W15181566502019 @default.
- W1518156650 countsByYear W15181566502020 @default.
- W1518156650 countsByYear W15181566502021 @default.
- W1518156650 countsByYear W15181566502022 @default.
- W1518156650 countsByYear W15181566502023 @default.
- W1518156650 crossrefType "journal-article" @default.
- W1518156650 hasAuthorship W1518156650A5018698322 @default.
- W1518156650 hasAuthorship W1518156650A5021956426 @default.
- W1518156650 hasAuthorship W1518156650A5025616122 @default.
- W1518156650 hasAuthorship W1518156650A5032433963 @default.
- W1518156650 hasAuthorship W1518156650A5073919282 @default.
- W1518156650 hasAuthorship W1518156650A5078086722 @default.
- W1518156650 hasAuthorship W1518156650A5081290775 @default.
- W1518156650 hasBestOaLocation W15181566502 @default.
- W1518156650 hasConcept C11413529 @default.
- W1518156650 hasConcept C119857082 @default.
- W1518156650 hasConcept C121332964 @default.
- W1518156650 hasConcept C124101348 @default.
- W1518156650 hasConcept C12997251 @default.
- W1518156650 hasConcept C134306372 @default.
- W1518156650 hasConcept C143724316 @default.
- W1518156650 hasConcept C151406439 @default.
- W1518156650 hasConcept C151730666 @default.
- W1518156650 hasConcept C154945302 @default.
- W1518156650 hasConcept C161584116 @default.
- W1518156650 hasConcept C199163554 @default.
- W1518156650 hasConcept C24590314 @default.
- W1518156650 hasConcept C26873012 @default.
- W1518156650 hasConcept C31258907 @default.
- W1518156650 hasConcept C33923547 @default.
- W1518156650 hasConcept C36464697 @default.
- W1518156650 hasConcept C36503486 @default.
- W1518156650 hasConcept C41008148 @default.
- W1518156650 hasConcept C57493831 @default.
- W1518156650 hasConcept C59732488 @default.
- W1518156650 hasConcept C73555534 @default.
- W1518156650 hasConcept C739882 @default.
- W1518156650 hasConcept C86803240 @default.
- W1518156650 hasConceptScore W1518156650C11413529 @default.
- W1518156650 hasConceptScore W1518156650C119857082 @default.
- W1518156650 hasConceptScore W1518156650C121332964 @default.
- W1518156650 hasConceptScore W1518156650C124101348 @default.
- W1518156650 hasConceptScore W1518156650C12997251 @default.
- W1518156650 hasConceptScore W1518156650C134306372 @default.
- W1518156650 hasConceptScore W1518156650C143724316 @default.
- W1518156650 hasConceptScore W1518156650C151406439 @default.
- W1518156650 hasConceptScore W1518156650C151730666 @default.
- W1518156650 hasConceptScore W1518156650C154945302 @default.
- W1518156650 hasConceptScore W1518156650C161584116 @default.