Matches in SemOpenAlex for { <https://semopenalex.org/work/W1680148840> ?p ?o ?g. }
- W1680148840 endingPage "1168" @default.
- W1680148840 startingPage "1157" @default.
- W1680148840 abstract "We address the problem of estimating the number of people in a room using information available in standard HVAC systems. We propose an estimation scheme based on two phases. In the first phase, we assume the availability of pilot data and identify a model for the dynamic relations occurring between occupancy levels, CO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> concentration and room temperature. In the second phase, we make use of the identified model to formulate the occupancy estimation task as a deconvolution problem. In particular, we aim at obtaining an estimated occupancy pattern by trading off between adherence to the current measurements and regularity of the pattern. To achieve this goal, we employ a special instance of the so-called fused lasso estimator, which promotes piecewise constant estimates by including an ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> norm-dependent term in the associated cost function. We extend the proposed estimator to include different sources of information, such as actuation of the ventilation system and door opening/closing events. We also provide conditions under which the occupancy estimator provides correct estimates within a guaranteed probability. We test the estimator running experiments on a real testbed, in order to compare it with other occupancy estimation techniques and assess the value of having additional information sources. Note to Practitioners - Home automation systems benefit from automatic recognition of human presence in the built environment. Since dedicated hardware is costly, it may be preferable to detect occupancy with software-based systems which do not require the installation of additional devices. The object of this study is the reconstruction of occupancy patterns in a room using measurements of concentration, temperature, fresh air inflow, and door opening/closing events. All these signals are information sources often available in HVAC systems of modern buildings and homes. We assess the value of such information sources in terms of their relevance in detecting occupancy in small and medium-sized rooms. The proposed estimation scheme is composed of two distinct phases. The first is a training phase where the goal is to derive a mathematical model relating the number of occupants with the concentration. It is required to record the actual occupants in the room for a time period spanning few days, a task that can be performed either with manual logging or with temporary dedicated hardware counting systems. In a second phase, we use the derived model to design an online software which collects measurements of the environmental signals and provides the number of people currently in the room. The estimated occupancy levels can then be employed to enhance the efficiency of the HVAC system of the building. We notice that, in modern residential buildings composed by structurally equal flats, the training phase can be run in one flat only, since the obtained model will be reasonably valid for the other flats." @default.
- W1680148840 created "2016-06-24" @default.
- W1680148840 creator A5000544193 @default.
- W1680148840 creator A5028112034 @default.
- W1680148840 creator A5045354671 @default.
- W1680148840 creator A5045975901 @default.
- W1680148840 creator A5067150659 @default.
- W1680148840 date "2015-10-01" @default.
- W1680148840 modified "2023-10-01" @default.
- W1680148840 title "Regularized Deconvolution-Based Approaches for Estimating Room Occupancies" @default.
- W1680148840 cites W1963968891 @default.
- W1680148840 cites W1969509777 @default.
- W1680148840 cites W1972669681 @default.
- W1680148840 cites W1975769074 @default.
- W1680148840 cites W1980091084 @default.
- W1680148840 cites W1982652137 @default.
- W1680148840 cites W1984515777 @default.
- W1680148840 cites W1991784919 @default.
- W1680148840 cites W1995400545 @default.
- W1680148840 cites W1996146612 @default.
- W1680148840 cites W2001351287 @default.
- W1680148840 cites W2021065610 @default.
- W1680148840 cites W2021302824 @default.
- W1680148840 cites W2029636202 @default.
- W1680148840 cites W2037479549 @default.
- W1680148840 cites W2046380225 @default.
- W1680148840 cites W2053431623 @default.
- W1680148840 cites W2058393756 @default.
- W1680148840 cites W2061656867 @default.
- W1680148840 cites W2063754791 @default.
- W1680148840 cites W2065680447 @default.
- W1680148840 cites W2069872789 @default.
- W1680148840 cites W2092766760 @default.
- W1680148840 cites W2116092561 @default.
- W1680148840 cites W2119669188 @default.
- W1680148840 cites W2133667298 @default.
- W1680148840 cites W2136369753 @default.
- W1680148840 cites W2140514146 @default.
- W1680148840 cites W2161083632 @default.
- W1680148840 cites W3106348863 @default.
- W1680148840 cites W4240940679 @default.
- W1680148840 cites W4250589301 @default.
- W1680148840 cites W4298876635 @default.
- W1680148840 cites W2127812877 @default.
- W1680148840 doi "https://doi.org/10.1109/tase.2015.2471305" @default.
- W1680148840 hasPublicationYear "2015" @default.
- W1680148840 type Work @default.
- W1680148840 sameAs 1680148840 @default.
- W1680148840 citedByCount "38" @default.
- W1680148840 countsByYear W16801488402015 @default.
- W1680148840 countsByYear W16801488402016 @default.
- W1680148840 countsByYear W16801488402017 @default.
- W1680148840 countsByYear W16801488402018 @default.
- W1680148840 countsByYear W16801488402019 @default.
- W1680148840 countsByYear W16801488402020 @default.
- W1680148840 countsByYear W16801488402021 @default.
- W1680148840 countsByYear W16801488402022 @default.
- W1680148840 countsByYear W16801488402023 @default.
- W1680148840 crossrefType "journal-article" @default.
- W1680148840 hasAuthorship W1680148840A5000544193 @default.
- W1680148840 hasAuthorship W1680148840A5028112034 @default.
- W1680148840 hasAuthorship W1680148840A5045354671 @default.
- W1680148840 hasAuthorship W1680148840A5045975901 @default.
- W1680148840 hasAuthorship W1680148840A5067150659 @default.
- W1680148840 hasBestOaLocation W16801488401 @default.
- W1680148840 hasConcept C105795698 @default.
- W1680148840 hasConcept C11413529 @default.
- W1680148840 hasConcept C126255220 @default.
- W1680148840 hasConcept C127413603 @default.
- W1680148840 hasConcept C160331591 @default.
- W1680148840 hasConcept C167928553 @default.
- W1680148840 hasConcept C170154142 @default.
- W1680148840 hasConcept C174576160 @default.
- W1680148840 hasConcept C185429906 @default.
- W1680148840 hasConcept C31258907 @default.
- W1680148840 hasConcept C31395832 @default.
- W1680148840 hasConcept C33923547 @default.
- W1680148840 hasConcept C41008148 @default.
- W1680148840 hasConceptScore W1680148840C105795698 @default.
- W1680148840 hasConceptScore W1680148840C11413529 @default.
- W1680148840 hasConceptScore W1680148840C126255220 @default.
- W1680148840 hasConceptScore W1680148840C127413603 @default.
- W1680148840 hasConceptScore W1680148840C160331591 @default.
- W1680148840 hasConceptScore W1680148840C167928553 @default.
- W1680148840 hasConceptScore W1680148840C170154142 @default.
- W1680148840 hasConceptScore W1680148840C174576160 @default.
- W1680148840 hasConceptScore W1680148840C185429906 @default.
- W1680148840 hasConceptScore W1680148840C31258907 @default.
- W1680148840 hasConceptScore W1680148840C31395832 @default.
- W1680148840 hasConceptScore W1680148840C33923547 @default.
- W1680148840 hasConceptScore W1680148840C41008148 @default.
- W1680148840 hasIssue "4" @default.
- W1680148840 hasLocation W16801488401 @default.
- W1680148840 hasLocation W16801488402 @default.
- W1680148840 hasOpenAccess W1680148840 @default.
- W1680148840 hasPrimaryLocation W16801488401 @default.
- W1680148840 hasRelatedWork W2106362003 @default.
- W1680148840 hasRelatedWork W2144956799 @default.