Matches in SemOpenAlex for { <https://semopenalex.org/work/W17508780> ?p ?o ?g. }
- W17508780 endingPage "28" @default.
- W17508780 startingPage "3" @default.
- W17508780 abstract "ly speaking, what have we done in the previous section? After applying a number of rules in polynomial time to an instance of Vertex Cover, we arrived at a reduced instance whose size can solely be expressed in terms of the parameter k. Since this can be easily done in O(n) time, we have found a data reduction for Vertex Cover with guarantees concerning its running time as well as its effectiveness. These properties are formalized in the concepts of a problem kernel and the corresponding kernelization. Definition 1.2. Let L be a parameterized problem, that is, L consists of input pairs (I, k), where I is the problem instance and k is the parameter. A reduction to a problem kernel (or kernelization) means to replace an instance (I, k) by a reduced instance (I , k) called problem kernel in polynomial time such that (1) k ≤ k, (2) I ′ is smaller than g(k) for some function g only depending on k, and (3) (I, k) has a solution if and only if (I , k) has one. While this definition does not formally require that it is possible to reconstruct a solution for the original instance from a solution for the problem kernel, all kernelizations we are aware of easily allow for this. The methodological approach of kernelization, including various techniques of data reduction, is best learned by the concrete examples that we discuss in Section 1.3; there, we will also discuss kernelizations for Vertex Cover that even yield a kernel with a linear number of vertices in k. To conclude this section, we state some useful general observations and remarks concerning Definition 1.2 and its connections to fixed-parameter tractability. Most notably, there is a close connection between fixedparameter tractable problems and those problems that have a problem kernel—they are exactly the same. Theorem 1.3 (Cai et al.). Every fixed-parameter tractable problem is kernelizable and vice-versa. April 3, 2007 16:42 World Scientific Review Volume 9in x 6in fptcluster 8 F. Huffner, R. Niedermeier & S. Wernicke Unfortunately, the practical use of this theorem is limited: the running times of a fixed-parameter algorithm directly obtained from a kernelization is usually not practical; and, in the other direction, the theorem does not constructively provide us with a data reduction scheme for a fixedparameter tractable problem. Hence, the main use of Theorem 1.3 is to establish the fixed-parameter tractability or amenability to kernelization of a problem—or show that we need not search any further (e.g., if a problem is known to be fixed-parameter intractable, we do not need to look for a kernelization). Rule VC3 explicitly needed the value of the parameter k. We call this a parameter-dependent rule as opposed to the parameter-independent rules VC1 and VC2, which are oblivious to k. Of course, one typically does not know the actual value of k in advance and then has to get around this by iteratively trying different values of k. While, in practice, one would naturally prefer to avoid this extra outer loop, assuming explicit knowledge of the parameter clearly adds some leverage to finding data reduction rules and is hence frequently encountered in kernelizations. 1.2.2. Depth-Bounded Search Trees After preprocessing the given input data of a problem by a kernelization and cutting away its “easy parts,” we are left with the “really hard” problem kernel to be solved. A standard way to explore the huge search space of a computationally hard problem is to perform a systematic exhaustive search. This can be organized in a tree-like fashion, which is the main subject of this section. Certainly, search trees are no new idea and have been extensively used in the design of exact algorithms (e.g., see Ref. 37–41). The main contribution of fixed-parameter theory to search tree approaches is the consideration of search trees whose depth is bounded by the parameter, usually leading to search trees that are much smaller than those of naive brute-force searches. Additionally, the speed of search tree exploration can (provably) be improved by exploiting kernelizations. An extremely simple search tree approach for solving Vertex Cover is to just take one vertex and branch into two cases: either this vertex is in the vertex cover or not. This leads to a search tree of size O(2). As we outline In general, the constraint k < n is easily established. As Dehne et al. point out in their studies of Cluster Editing, it depends on the concrete problem which search strategy for the “optimum” value of k is most efficient to employ in practice. April 3, 2007 16:42 World Scientific Review Volume 9in x 6in fptcluster Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 9" @default.
- W17508780 created "2016-06-24" @default.
- W17508780 creator A5033021388 @default.
- W17508780 creator A5037551711 @default.
- W17508780 creator A5063644073 @default.
- W17508780 date "2009-02-01" @default.
- W17508780 modified "2023-09-25" @default.
- W17508780 title "Fixed-Parameter Algorithms for Graph-Modeled Data Clustering" @default.
- W17508780 cites W1479863711 @default.
- W17508780 cites W1504968226 @default.
- W17508780 cites W1508419498 @default.
- W17508780 cites W1510857214 @default.
- W17508780 cites W1517036688 @default.
- W17508780 cites W1530803355 @default.
- W17508780 cites W1550307887 @default.
- W17508780 cites W1551538598 @default.
- W17508780 cites W1558630420 @default.
- W17508780 cites W1559081432 @default.
- W17508780 cites W1570425181 @default.
- W17508780 cites W1577533968 @default.
- W17508780 cites W1582963151 @default.
- W17508780 cites W1593916827 @default.
- W17508780 cites W1600450150 @default.
- W17508780 cites W1968481794 @default.
- W17508780 cites W1972845596 @default.
- W17508780 cites W1976687866 @default.
- W17508780 cites W1976697697 @default.
- W17508780 cites W1982442837 @default.
- W17508780 cites W1987263710 @default.
- W17508780 cites W2001201148 @default.
- W17508780 cites W2007979101 @default.
- W17508780 cites W2011039300 @default.
- W17508780 cites W2015480586 @default.
- W17508780 cites W2020681752 @default.
- W17508780 cites W2035372875 @default.
- W17508780 cites W2038636594 @default.
- W17508780 cites W2048597630 @default.
- W17508780 cites W2055764977 @default.
- W17508780 cites W2057361103 @default.
- W17508780 cites W2059453880 @default.
- W17508780 cites W2062014401 @default.
- W17508780 cites W2064252342 @default.
- W17508780 cites W2068324124 @default.
- W17508780 cites W2081254453 @default.
- W17508780 cites W2083748805 @default.
- W17508780 cites W2094077034 @default.
- W17508780 cites W2096768449 @default.
- W17508780 cites W2096782900 @default.
- W17508780 cites W2099200823 @default.
- W17508780 cites W2100272598 @default.
- W17508780 cites W2102948402 @default.
- W17508780 cites W2106119591 @default.
- W17508780 cites W2107223449 @default.
- W17508780 cites W2108078607 @default.
- W17508780 cites W2108334325 @default.
- W17508780 cites W2116453796 @default.
- W17508780 cites W2137560895 @default.
- W17508780 cites W2140408741 @default.
- W17508780 cites W2146081992 @default.
- W17508780 cites W2147758638 @default.
- W17508780 cites W2155675331 @default.
- W17508780 cites W2167372977 @default.
- W17508780 cites W2340006107 @default.
- W17508780 cites W2611804663 @default.
- W17508780 cites W2611831635 @default.
- W17508780 cites W2798588639 @default.
- W17508780 cites W2799438837 @default.
- W17508780 cites W2913688336 @default.
- W17508780 cites W2914959486 @default.
- W17508780 cites W3145128584 @default.
- W17508780 cites W75155422 @default.
- W17508780 cites W2264286426 @default.
- W17508780 cites W2775260411 @default.
- W17508780 doi "https://doi.org/10.1142/9789812771667_0001" @default.
- W17508780 hasPublicationYear "2009" @default.
- W17508780 type Work @default.
- W17508780 sameAs 17508780 @default.
- W17508780 citedByCount "2" @default.
- W17508780 countsByYear W175087802012 @default.
- W17508780 crossrefType "book-chapter" @default.
- W17508780 hasAuthorship W17508780A5033021388 @default.
- W17508780 hasAuthorship W17508780A5037551711 @default.
- W17508780 hasAuthorship W17508780A5063644073 @default.
- W17508780 hasConcept C105795698 @default.
- W17508780 hasConcept C111335779 @default.
- W17508780 hasConcept C11413529 @default.
- W17508780 hasConcept C114614502 @default.
- W17508780 hasConcept C118615104 @default.
- W17508780 hasConcept C122280245 @default.
- W17508780 hasConcept C12267149 @default.
- W17508780 hasConcept C132525143 @default.
- W17508780 hasConcept C154945302 @default.
- W17508780 hasConcept C160446489 @default.
- W17508780 hasConcept C165464430 @default.
- W17508780 hasConcept C17762858 @default.
- W17508780 hasConcept C207225210 @default.
- W17508780 hasConcept C2524010 @default.
- W17508780 hasConcept C311688 @default.