Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978752893> ?p ?o ?g. }
- W1978752893 endingPage "59" @default.
- W1978752893 startingPage "49" @default.
- W1978752893 abstract "Mafic enclaves in felsic plutons are often used to argue that intermediate magmas are formed by mafic–felsic magma mixing, but the extent and nature of mixing remains unclear. Here, we examine biotite-rich rinds on mafic enclaves from the Cretaceous Bernasconi Hills Pluton in the Peninsular Ranges Batholith of southern California to gain insight into magma mixing processes. Rinds differ from the enclave interior and the host monzogranite in being more fine-grained and more mafic and potassic. Rinds are also 2–5 times more enriched in rare earth elements than the host monzogranite and up to 3 times more enriched than enclave interiors. These observations indicate that the rinds were not generated by isochemical quenching, binary mixing between enclave and host monzogranite, or in-situ magmatic differentiation. Instead, rinds appear to have been formed by chemical reaction between the solidified enclave and a hydrous K-rich residual melt or fluid formed after progressive crystallization and cooling of the host magma body, transforming amphibole in the enclave into biotite-rich rinds. Field observations show snapshots of biotite-rich rinds being eroded away and new rinds simultaneously forming on freshly eroded surfaces of enclaves, consistent with rinds being formed by chemical reaction instead of as quenching products. Deformation of enclaves is accommodated primarily by ductile attenuation of the thin rind while the enclave as a whole tends to rotate as a rigid body with minimal internal deformation other than localized brittle failure. A comparison of the aspect ratios and cross-sectional areas of mafic bodies in the pluton shows that those with high aspect ratios (indicating greater accumulated strain) are systematically more biotite-rich and have smaller cross-sectional areas than those with lower aspect ratios, which are amphibole-rich. These relationships not only confirm that biotite-rich lithologies are more deformable but also indicate that the high aspect ratio biotite-rich bodies (also known as schlieren) derive from small parent bodies, consistent with a derivation from eroding enclave rinds rather than from the enclave itself. Finally, geochemical and thermodynamic modeling indicates that the biotite-rich rinds formed when the host felsic magma had cooled to a low melt fraction state (F=0.15–0.3; 700–760 °C), suggesting that such reactions occur late in the lifespan of a magma body. Thus, mafic–felsic mixing may not be an efficient process for making intermediate magmas unless the magma body can reside at this low temperature range long enough to permit rind formation and subsequent deformation." @default.
- W1978752893 created "2016-06-24" @default.
- W1978752893 creator A5000404492 @default.
- W1978752893 creator A5043902758 @default.
- W1978752893 creator A5088270263 @default.
- W1978752893 date "2014-05-01" @default.
- W1978752893 modified "2023-10-01" @default.
- W1978752893 title "Mafic–felsic magma mixing limited by reactive processes: A case study of biotite-rich rinds on mafic enclaves" @default.
- W1978752893 cites W1590598255 @default.
- W1978752893 cites W1966564764 @default.
- W1978752893 cites W1969411527 @default.
- W1978752893 cites W1973012528 @default.
- W1978752893 cites W1979712772 @default.
- W1978752893 cites W1988522985 @default.
- W1978752893 cites W1991202690 @default.
- W1978752893 cites W1993307882 @default.
- W1978752893 cites W2000190788 @default.
- W1978752893 cites W2000352263 @default.
- W1978752893 cites W2002333091 @default.
- W1978752893 cites W2008558371 @default.
- W1978752893 cites W2014405250 @default.
- W1978752893 cites W2023026057 @default.
- W1978752893 cites W2026476332 @default.
- W1978752893 cites W2039291242 @default.
- W1978752893 cites W2042692134 @default.
- W1978752893 cites W2044358950 @default.
- W1978752893 cites W2046961523 @default.
- W1978752893 cites W2047441397 @default.
- W1978752893 cites W2047891230 @default.
- W1978752893 cites W2050985826 @default.
- W1978752893 cites W2055595543 @default.
- W1978752893 cites W2056222688 @default.
- W1978752893 cites W2063025747 @default.
- W1978752893 cites W2065485197 @default.
- W1978752893 cites W2066546562 @default.
- W1978752893 cites W2073137830 @default.
- W1978752893 cites W2073876147 @default.
- W1978752893 cites W2088611727 @default.
- W1978752893 cites W2098262145 @default.
- W1978752893 cites W2100411277 @default.
- W1978752893 cites W2118804657 @default.
- W1978752893 cites W2120265417 @default.
- W1978752893 cites W2123698291 @default.
- W1978752893 cites W2135549165 @default.
- W1978752893 cites W2136468115 @default.
- W1978752893 cites W2148145491 @default.
- W1978752893 cites W2153024854 @default.
- W1978752893 cites W2163661774 @default.
- W1978752893 cites W2313061604 @default.
- W1978752893 cites W4243532865 @default.
- W1978752893 cites W2125266900 @default.
- W1978752893 doi "https://doi.org/10.1016/j.epsl.2014.02.040" @default.
- W1978752893 hasPublicationYear "2014" @default.
- W1978752893 type Work @default.
- W1978752893 sameAs 1978752893 @default.
- W1978752893 citedByCount "84" @default.
- W1978752893 countsByYear W19787528932014 @default.
- W1978752893 countsByYear W19787528932015 @default.
- W1978752893 countsByYear W19787528932016 @default.
- W1978752893 countsByYear W19787528932017 @default.
- W1978752893 countsByYear W19787528932018 @default.
- W1978752893 countsByYear W19787528932019 @default.
- W1978752893 countsByYear W19787528932020 @default.
- W1978752893 countsByYear W19787528932021 @default.
- W1978752893 countsByYear W19787528932022 @default.
- W1978752893 countsByYear W19787528932023 @default.
- W1978752893 crossrefType "journal-article" @default.
- W1978752893 hasAuthorship W1978752893A5000404492 @default.
- W1978752893 hasAuthorship W1978752893A5043902758 @default.
- W1978752893 hasAuthorship W1978752893A5088270263 @default.
- W1978752893 hasConcept C120806208 @default.
- W1978752893 hasConcept C127313418 @default.
- W1978752893 hasConcept C151730666 @default.
- W1978752893 hasConcept C167236342 @default.
- W1978752893 hasConcept C167284885 @default.
- W1978752893 hasConcept C172660882 @default.
- W1978752893 hasConcept C17409809 @default.
- W1978752893 hasConcept C183222429 @default.
- W1978752893 hasConcept C193429443 @default.
- W1978752893 hasConcept C2777229588 @default.
- W1978752893 hasConcept C2779870107 @default.
- W1978752893 hasConcept C34122518 @default.
- W1978752893 hasConcept C5900021 @default.
- W1978752893 hasConcept C77928131 @default.
- W1978752893 hasConceptScore W1978752893C120806208 @default.
- W1978752893 hasConceptScore W1978752893C127313418 @default.
- W1978752893 hasConceptScore W1978752893C151730666 @default.
- W1978752893 hasConceptScore W1978752893C167236342 @default.
- W1978752893 hasConceptScore W1978752893C167284885 @default.
- W1978752893 hasConceptScore W1978752893C172660882 @default.
- W1978752893 hasConceptScore W1978752893C17409809 @default.
- W1978752893 hasConceptScore W1978752893C183222429 @default.
- W1978752893 hasConceptScore W1978752893C193429443 @default.
- W1978752893 hasConceptScore W1978752893C2777229588 @default.
- W1978752893 hasConceptScore W1978752893C2779870107 @default.
- W1978752893 hasConceptScore W1978752893C34122518 @default.
- W1978752893 hasConceptScore W1978752893C5900021 @default.
- W1978752893 hasConceptScore W1978752893C77928131 @default.