Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985675079> ?p ?o ?g. }
- W1985675079 endingPage "551" @default.
- W1985675079 startingPage "539" @default.
- W1985675079 abstract "Abstract Question Can predictors derived from air‐ and space‐borne high‐resolution remote sensing data improve models of species richness commonly built using coarser‐scaled environmental variables? Location Switzerland, covering 41 244 km 2 of C entral E urope. Methods We applied linear regressions to model species richness of woody species, herbs, edaphic bryophytes and epiphytic lichens in S wiss forests. We included high‐resolution predictors derived from digital height models and from satellite spectral images. Coarser‐scaled predictors characterizing climatic and topographic conditions were also included, as were soil properties and geology. We applied hierarchical partitioning to regression models to investigate the independent contribution of each predictor set to species richness models. Results Predictors derived from high‐resolution remote sensing data substantially improved the species richness models (increase 14–55% of R 2 ). However, coarse‐scaled climatic and topographic predictors still explained a high proportion of the variance in the species richness data in all models, independently of other predictors commonly used. The importance of the remotely sensed variables was strongly dependent on the biogeographic region considered. The species richness models of smaller organisms of the forest floor (herbs and edaphic bryophytes) benefited greatly from adding high‐resolution topographic predictors, indicating the importance of microtopographic heterogeneity for these groups. Both epiphytic lichens and herbs responded strongly to indicators of structural properties of the forest stand. Conclusions High‐resolution remote sensing data is a proxy for micro‐environmental structures and variation in these structures. Our results show that predictors derived from such data can improve species richness models considerably, especially in regions with low climatic and/or topographic variation. High‐resolution remote sensing variables excellently complement coarser‐scaled predictors, as they are available over large areas at low cost." @default.
- W1985675079 created "2016-06-24" @default.
- W1985675079 creator A5042523983 @default.
- W1985675079 creator A5046854375 @default.
- W1985675079 creator A5061563872 @default.
- W1985675079 creator A5076593784 @default.
- W1985675079 creator A5081829828 @default.
- W1985675079 date "2013-01-29" @default.
- W1985675079 modified "2023-10-07" @default.
- W1985675079 title "High‐resolution remote sensing data improves models of species richness" @default.
- W1985675079 cites W1489838709 @default.
- W1985675079 cites W1525188676 @default.
- W1985675079 cites W1824229367 @default.
- W1985675079 cites W1839139904 @default.
- W1985675079 cites W1975052711 @default.
- W1985675079 cites W1993262630 @default.
- W1985675079 cites W1998406443 @default.
- W1985675079 cites W2004560178 @default.
- W1985675079 cites W2005054459 @default.
- W1985675079 cites W2005065224 @default.
- W1985675079 cites W2007603980 @default.
- W1985675079 cites W2009313389 @default.
- W1985675079 cites W2019000563 @default.
- W1985675079 cites W2023188233 @default.
- W1985675079 cites W2027146907 @default.
- W1985675079 cites W2027709818 @default.
- W1985675079 cites W2028043141 @default.
- W1985675079 cites W2037528563 @default.
- W1985675079 cites W2038342555 @default.
- W1985675079 cites W2047506045 @default.
- W1985675079 cites W2052611179 @default.
- W1985675079 cites W2059501000 @default.
- W1985675079 cites W2059737127 @default.
- W1985675079 cites W2064497293 @default.
- W1985675079 cites W2066112264 @default.
- W1985675079 cites W2076105986 @default.
- W1985675079 cites W2077077333 @default.
- W1985675079 cites W2077491168 @default.
- W1985675079 cites W2079923009 @default.
- W1985675079 cites W2080086266 @default.
- W1985675079 cites W2081959386 @default.
- W1985675079 cites W2084082287 @default.
- W1985675079 cites W2091098597 @default.
- W1985675079 cites W2098165261 @default.
- W1985675079 cites W2099410216 @default.
- W1985675079 cites W2101857947 @default.
- W1985675079 cites W2102689718 @default.
- W1985675079 cites W2109342520 @default.
- W1985675079 cites W2109598181 @default.
- W1985675079 cites W2113397378 @default.
- W1985675079 cites W2113410727 @default.
- W1985675079 cites W2116342619 @default.
- W1985675079 cites W2116772412 @default.
- W1985675079 cites W2119534769 @default.
- W1985675079 cites W2121284273 @default.
- W1985675079 cites W2121717544 @default.
- W1985675079 cites W2123337039 @default.
- W1985675079 cites W2124155637 @default.
- W1985675079 cites W2127951495 @default.
- W1985675079 cites W2129464821 @default.
- W1985675079 cites W2153349868 @default.
- W1985675079 cites W2157936864 @default.
- W1985675079 cites W2159718099 @default.
- W1985675079 cites W2162348455 @default.
- W1985675079 cites W2164790386 @default.
- W1985675079 cites W2168175751 @default.
- W1985675079 cites W2169687028 @default.
- W1985675079 cites W2175013224 @default.
- W1985675079 cites W4211243502 @default.
- W1985675079 cites W4233539062 @default.
- W1985675079 cites W4248884888 @default.
- W1985675079 doi "https://doi.org/10.1111/avsc.12028" @default.
- W1985675079 hasPublicationYear "2013" @default.
- W1985675079 type Work @default.
- W1985675079 sameAs 1985675079 @default.
- W1985675079 citedByCount "36" @default.
- W1985675079 countsByYear W19856750792013 @default.
- W1985675079 countsByYear W19856750792014 @default.
- W1985675079 countsByYear W19856750792015 @default.
- W1985675079 countsByYear W19856750792016 @default.
- W1985675079 countsByYear W19856750792017 @default.
- W1985675079 countsByYear W19856750792018 @default.
- W1985675079 countsByYear W19856750792019 @default.
- W1985675079 countsByYear W19856750792020 @default.
- W1985675079 countsByYear W19856750792021 @default.
- W1985675079 countsByYear W19856750792022 @default.
- W1985675079 countsByYear W19856750792023 @default.
- W1985675079 crossrefType "journal-article" @default.
- W1985675079 hasAuthorship W1985675079A5042523983 @default.
- W1985675079 hasAuthorship W1985675079A5046854375 @default.
- W1985675079 hasAuthorship W1985675079A5061563872 @default.
- W1985675079 hasAuthorship W1985675079A5076593784 @default.
- W1985675079 hasAuthorship W1985675079A5081829828 @default.
- W1985675079 hasConcept C100970517 @default.
- W1985675079 hasConcept C120149898 @default.
- W1985675079 hasConcept C159750122 @default.
- W1985675079 hasConcept C18903297 @default.
- W1985675079 hasConcept C205649164 @default.