Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993261349> ?p ?o ?g. }
- W1993261349 endingPage "1048" @default.
- W1993261349 startingPage "1036" @default.
- W1993261349 abstract "Prediction intervals that provide estimated values as well as the corresponding reliability are applied to nonlinear time series forecast. However, constructing reliable prediction intervals for noisy time series is still a challenge. In this paper, a bootstrapping reservoir computing network ensemble (BRCNE) is proposed and a simultaneous training method based on Bayesian linear regression is developed. In addition, the structural parameters of the BRCNE, that is, the number of reservoir computing networks and the reservoir dimension, are determined off-line by the 0.632 bootstrap cross-validation. To verify the effectiveness of the proposed method, two kinds of time series data, including the multisuperimposed oscillator problem with additive noises and a practical gas flow in steel industry are employed here. The experimental results indicate that the proposed approach has a satisfactory performance on prediction intervals for practical applications." @default.
- W1993261349 created "2016-06-24" @default.
- W1993261349 creator A5024970317 @default.
- W1993261349 creator A5039819154 @default.
- W1993261349 creator A5046597133 @default.
- W1993261349 creator A5061884304 @default.
- W1993261349 date "2013-07-01" @default.
- W1993261349 modified "2023-10-14" @default.
- W1993261349 title "Prediction Intervals for a Noisy Nonlinear Time Series Based on a Bootstrapping Reservoir Computing Network Ensemble" @default.
- W1993261349 cites W1560021816 @default.
- W1993261349 cites W1981780459 @default.
- W1993261349 cites W1991277766 @default.
- W1993261349 cites W2006151125 @default.
- W1993261349 cites W2022175477 @default.
- W1993261349 cites W2034544282 @default.
- W1993261349 cites W2041155726 @default.
- W1993261349 cites W2069017697 @default.
- W1993261349 cites W2074477564 @default.
- W1993261349 cites W2106390255 @default.
- W1993261349 cites W2111051539 @default.
- W1993261349 cites W2118706537 @default.
- W1993261349 cites W2119512810 @default.
- W1993261349 cites W2122130411 @default.
- W1993261349 cites W2125303539 @default.
- W1993261349 cites W2125336244 @default.
- W1993261349 cites W2126084135 @default.
- W1993261349 cites W2139287577 @default.
- W1993261349 cites W2140627010 @default.
- W1993261349 cites W2151310832 @default.
- W1993261349 cites W2159421569 @default.
- W1993261349 cites W2160566248 @default.
- W1993261349 cites W2171666055 @default.
- W1993261349 cites W3104887532 @default.
- W1993261349 cites W3106889297 @default.
- W1993261349 doi "https://doi.org/10.1109/tnnls.2013.2250299" @default.
- W1993261349 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24808519" @default.
- W1993261349 hasPublicationYear "2013" @default.
- W1993261349 type Work @default.
- W1993261349 sameAs 1993261349 @default.
- W1993261349 citedByCount "54" @default.
- W1993261349 countsByYear W19932613492013 @default.
- W1993261349 countsByYear W19932613492014 @default.
- W1993261349 countsByYear W19932613492015 @default.
- W1993261349 countsByYear W19932613492016 @default.
- W1993261349 countsByYear W19932613492017 @default.
- W1993261349 countsByYear W19932613492018 @default.
- W1993261349 countsByYear W19932613492019 @default.
- W1993261349 countsByYear W19932613492020 @default.
- W1993261349 countsByYear W19932613492021 @default.
- W1993261349 countsByYear W19932613492022 @default.
- W1993261349 countsByYear W19932613492023 @default.
- W1993261349 crossrefType "journal-article" @default.
- W1993261349 hasAuthorship W1993261349A5024970317 @default.
- W1993261349 hasAuthorship W1993261349A5039819154 @default.
- W1993261349 hasAuthorship W1993261349A5046597133 @default.
- W1993261349 hasAuthorship W1993261349A5061884304 @default.
- W1993261349 hasConcept C103402496 @default.
- W1993261349 hasConcept C11413529 @default.
- W1993261349 hasConcept C119857082 @default.
- W1993261349 hasConcept C121332964 @default.
- W1993261349 hasConcept C124101348 @default.
- W1993261349 hasConcept C127313418 @default.
- W1993261349 hasConcept C135796866 @default.
- W1993261349 hasConcept C143724316 @default.
- W1993261349 hasConcept C147168706 @default.
- W1993261349 hasConcept C149782125 @default.
- W1993261349 hasConcept C151406439 @default.
- W1993261349 hasConcept C151730666 @default.
- W1993261349 hasConcept C154945302 @default.
- W1993261349 hasConcept C158622935 @default.
- W1993261349 hasConcept C163258240 @default.
- W1993261349 hasConcept C207609745 @default.
- W1993261349 hasConcept C33923547 @default.
- W1993261349 hasConcept C41008148 @default.
- W1993261349 hasConcept C43214815 @default.
- W1993261349 hasConcept C50644808 @default.
- W1993261349 hasConcept C62520636 @default.
- W1993261349 hasConceptScore W1993261349C103402496 @default.
- W1993261349 hasConceptScore W1993261349C11413529 @default.
- W1993261349 hasConceptScore W1993261349C119857082 @default.
- W1993261349 hasConceptScore W1993261349C121332964 @default.
- W1993261349 hasConceptScore W1993261349C124101348 @default.
- W1993261349 hasConceptScore W1993261349C127313418 @default.
- W1993261349 hasConceptScore W1993261349C135796866 @default.
- W1993261349 hasConceptScore W1993261349C143724316 @default.
- W1993261349 hasConceptScore W1993261349C147168706 @default.
- W1993261349 hasConceptScore W1993261349C149782125 @default.
- W1993261349 hasConceptScore W1993261349C151406439 @default.
- W1993261349 hasConceptScore W1993261349C151730666 @default.
- W1993261349 hasConceptScore W1993261349C154945302 @default.
- W1993261349 hasConceptScore W1993261349C158622935 @default.
- W1993261349 hasConceptScore W1993261349C163258240 @default.
- W1993261349 hasConceptScore W1993261349C207609745 @default.
- W1993261349 hasConceptScore W1993261349C33923547 @default.
- W1993261349 hasConceptScore W1993261349C41008148 @default.
- W1993261349 hasConceptScore W1993261349C43214815 @default.
- W1993261349 hasConceptScore W1993261349C50644808 @default.
- W1993261349 hasConceptScore W1993261349C62520636 @default.