Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993804576> ?p ?o ?g. }
- W1993804576 endingPage "2912" @default.
- W1993804576 startingPage "2899" @default.
- W1993804576 abstract "Molecular simulation is increasingly used by chemical engineers and industrial chemists in process and product development. In particular, the possibility to predict the structure and stability of potential polymorphs of a substance is of tremendous interest to the pharmaceutical and specialty chemicals industry. Molecular mechanics modeling relies on the use of parametrized force fields and methods of assigning point charges to the atoms in the molecules. In commercial molecular simulation software, a wide variety of such combinations are available, and there is a need for critical assessment of the capabilities of the different alternatives. In the present work, the performance of several molecular mechanics force fields combined with different methods for the assignment of atomic point charges have been examined with regard to their ability to calculate absolute crystal lattice energies and their capacity to identify the experimental structure as a minimum on the potential energy hypersurface. Seven small, aromatic monomolecular crystalline compounds are used in the evaluation. It is found that the majority of the examined methods cannot be used to reliably predict absolute lattice energies. The most promising results were obtained with the Pcff force field using integral charges, and the Dreiding force field using Gasteiger charges, both of which performed with an accuracy of the same order of magnitude as the variations in experimental lattice energies. Overall, it has been observed that the best results are achieved if the same force field method is used to relax the crystal structure and calculate the energy, and to optimize and calculate the energy of the gas phase molecule used for the correction for changes in molecular geometry. The Pcff and Compass force fields with integral charges have been found to predict relaxed structures closest to the experimental ones. In addition, five different methods for determining point charges fitted to the electrostatic potential (ESP charges), available in the same software, have been evaluated. For each method, the molecular geometries of 10 small, organic molecules were optimized, and ESP charges calculated and analyzed for linear correlation with a set of reference charges of an accepted standard method, HF/6-31G*. Dmol-3 gives charges that correlate well with the reference charge. The charges from Vamp are not linearly scalable to the HF/6-31G*-level, which is attributed partly to the geometry optimization but mainly to the calculation of the ESP and the subsequent charge fit." @default.
- W1993804576 created "2016-06-24" @default.
- W1993804576 creator A5025383067 @default.
- W1993804576 creator A5068923142 @default.
- W1993804576 date "2009-02-18" @default.
- W1993804576 modified "2023-09-30" @default.
- W1993804576 title "Force Fields and Point Charges for Crystal Structure Modeling" @default.
- W1993804576 cites W1507411402 @default.
- W1993804576 cites W1595747105 @default.
- W1993804576 cites W1934954394 @default.
- W1993804576 cites W1964022336 @default.
- W1993804576 cites W1966750682 @default.
- W1993804576 cites W1968498353 @default.
- W1993804576 cites W1975160033 @default.
- W1993804576 cites W1976106600 @default.
- W1993804576 cites W1981368803 @default.
- W1993804576 cites W1983117745 @default.
- W1993804576 cites W1987802985 @default.
- W1993804576 cites W1995269896 @default.
- W1993804576 cites W1996305503 @default.
- W1993804576 cites W2001070243 @default.
- W1993804576 cites W2008517160 @default.
- W1993804576 cites W2012913710 @default.
- W1993804576 cites W2018520573 @default.
- W1993804576 cites W2019367082 @default.
- W1993804576 cites W2021215639 @default.
- W1993804576 cites W2023016193 @default.
- W1993804576 cites W2023560650 @default.
- W1993804576 cites W2024291644 @default.
- W1993804576 cites W2026670903 @default.
- W1993804576 cites W2031200077 @default.
- W1993804576 cites W2037159328 @default.
- W1993804576 cites W2043961018 @default.
- W1993804576 cites W2045022256 @default.
- W1993804576 cites W2048993566 @default.
- W1993804576 cites W2049079467 @default.
- W1993804576 cites W2050457332 @default.
- W1993804576 cites W2050535232 @default.
- W1993804576 cites W2052086097 @default.
- W1993804576 cites W2054641495 @default.
- W1993804576 cites W2056148891 @default.
- W1993804576 cites W2070446606 @default.
- W1993804576 cites W2071865462 @default.
- W1993804576 cites W2071919311 @default.
- W1993804576 cites W2079460619 @default.
- W1993804576 cites W2081647585 @default.
- W1993804576 cites W2081847959 @default.
- W1993804576 cites W2084377411 @default.
- W1993804576 cites W2085678446 @default.
- W1993804576 cites W2085822586 @default.
- W1993804576 cites W2087668916 @default.
- W1993804576 cites W2090628749 @default.
- W1993804576 cites W2091654157 @default.
- W1993804576 cites W2095828547 @default.
- W1993804576 cites W2102537419 @default.
- W1993804576 cites W2104730763 @default.
- W1993804576 cites W2114643453 @default.
- W1993804576 cites W2128554293 @default.
- W1993804576 cites W2137056475 @default.
- W1993804576 cites W2140020886 @default.
- W1993804576 cites W2145697537 @default.
- W1993804576 cites W2148249851 @default.
- W1993804576 cites W2158478944 @default.
- W1993804576 cites W2170006871 @default.
- W1993804576 cites W2461011492 @default.
- W1993804576 doi "https://doi.org/10.1021/ie800502m" @default.
- W1993804576 hasPublicationYear "2009" @default.
- W1993804576 type Work @default.
- W1993804576 sameAs 1993804576 @default.
- W1993804576 citedByCount "23" @default.
- W1993804576 countsByYear W19938045762012 @default.
- W1993804576 countsByYear W19938045762013 @default.
- W1993804576 countsByYear W19938045762014 @default.
- W1993804576 countsByYear W19938045762015 @default.
- W1993804576 countsByYear W19938045762017 @default.
- W1993804576 countsByYear W19938045762018 @default.
- W1993804576 countsByYear W19938045762020 @default.
- W1993804576 countsByYear W19938045762021 @default.
- W1993804576 countsByYear W19938045762023 @default.
- W1993804576 crossrefType "journal-article" @default.
- W1993804576 hasAuthorship W1993804576A5025383067 @default.
- W1993804576 hasAuthorship W1993804576A5068923142 @default.
- W1993804576 hasBestOaLocation W19938045762 @default.
- W1993804576 hasConcept C10803110 @default.
- W1993804576 hasConcept C114410712 @default.
- W1993804576 hasConcept C115624301 @default.
- W1993804576 hasConcept C121332964 @default.
- W1993804576 hasConcept C121864883 @default.
- W1993804576 hasConcept C131468747 @default.
- W1993804576 hasConcept C134306372 @default.
- W1993804576 hasConcept C159467904 @default.
- W1993804576 hasConcept C185592680 @default.
- W1993804576 hasConcept C199360897 @default.
- W1993804576 hasConcept C24890656 @default.
- W1993804576 hasConcept C2781204021 @default.
- W1993804576 hasConcept C2781285689 @default.
- W1993804576 hasConcept C33923547 @default.
- W1993804576 hasConcept C41008148 @default.