Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994331036> ?p ?o ?g. }
- W1994331036 endingPage "8769" @default.
- W1994331036 startingPage "8755" @default.
- W1994331036 abstract "Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species." @default.
- W1994331036 created "2016-06-24" @default.
- W1994331036 creator A5005057043 @default.
- W1994331036 creator A5016787043 @default.
- W1994331036 creator A5056154832 @default.
- W1994331036 creator A5059291470 @default.
- W1994331036 creator A5073807486 @default.
- W1994331036 creator A5080012446 @default.
- W1994331036 date "2012-06-27" @default.
- W1994331036 modified "2023-10-16" @default.
- W1994331036 title "Using a Genetic Algorithm as an Optimal Band Selector in the Mid and Thermal Infrared (2.5–14 µm) to Discriminate Vegetation Species" @default.
- W1994331036 cites W1909266661 @default.
- W1994331036 cites W1971495154 @default.
- W1994331036 cites W1974896136 @default.
- W1994331036 cites W1995397999 @default.
- W1994331036 cites W2001179019 @default.
- W1994331036 cites W2002936684 @default.
- W1994331036 cites W2006924244 @default.
- W1994331036 cites W2008467627 @default.
- W1994331036 cites W2034555532 @default.
- W1994331036 cites W2036651699 @default.
- W1994331036 cites W2037911084 @default.
- W1994331036 cites W2037914589 @default.
- W1994331036 cites W2039201841 @default.
- W1994331036 cites W2039609561 @default.
- W1994331036 cites W2051105502 @default.
- W1994331036 cites W2066170610 @default.
- W1994331036 cites W2067703153 @default.
- W1994331036 cites W2075177482 @default.
- W1994331036 cites W2080828445 @default.
- W1994331036 cites W2085772809 @default.
- W1994331036 cites W2086936642 @default.
- W1994331036 cites W2093799708 @default.
- W1994331036 cites W2098057602 @default.
- W1994331036 cites W2105089251 @default.
- W1994331036 cites W2108038635 @default.
- W1994331036 cites W2113236250 @default.
- W1994331036 cites W2117855074 @default.
- W1994331036 cites W2118634086 @default.
- W1994331036 cites W2124834959 @default.
- W1994331036 cites W2129620124 @default.
- W1994331036 cites W2134832022 @default.
- W1994331036 cites W2143277109 @default.
- W1994331036 cites W2146354524 @default.
- W1994331036 cites W2160633256 @default.
- W1994331036 cites W2491899631 @default.
- W1994331036 cites W2952576796 @default.
- W1994331036 doi "https://doi.org/10.3390/s120708755" @default.
- W1994331036 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3444073" @default.
- W1994331036 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23012515" @default.
- W1994331036 hasPublicationYear "2012" @default.
- W1994331036 type Work @default.
- W1994331036 sameAs 1994331036 @default.
- W1994331036 citedByCount "64" @default.
- W1994331036 countsByYear W19943310362012 @default.
- W1994331036 countsByYear W19943310362013 @default.
- W1994331036 countsByYear W19943310362014 @default.
- W1994331036 countsByYear W19943310362015 @default.
- W1994331036 countsByYear W19943310362016 @default.
- W1994331036 countsByYear W19943310362017 @default.
- W1994331036 countsByYear W19943310362018 @default.
- W1994331036 countsByYear W19943310362019 @default.
- W1994331036 countsByYear W19943310362020 @default.
- W1994331036 countsByYear W19943310362021 @default.
- W1994331036 countsByYear W19943310362023 @default.
- W1994331036 crossrefType "journal-article" @default.
- W1994331036 hasAuthorship W1994331036A5005057043 @default.
- W1994331036 hasAuthorship W1994331036A5016787043 @default.
- W1994331036 hasAuthorship W1994331036A5056154832 @default.
- W1994331036 hasAuthorship W1994331036A5059291470 @default.
- W1994331036 hasAuthorship W1994331036A5073807486 @default.
- W1994331036 hasAuthorship W1994331036A5080012446 @default.
- W1994331036 hasBestOaLocation W19943310361 @default.
- W1994331036 hasConcept C11413529 @default.
- W1994331036 hasConcept C114700698 @default.
- W1994331036 hasConcept C119857082 @default.
- W1994331036 hasConcept C120665830 @default.
- W1994331036 hasConcept C121332964 @default.
- W1994331036 hasConcept C142724271 @default.
- W1994331036 hasConcept C153180895 @default.
- W1994331036 hasConcept C154945302 @default.
- W1994331036 hasConcept C159078339 @default.
- W1994331036 hasConcept C163651212 @default.
- W1994331036 hasConcept C176641082 @default.
- W1994331036 hasConcept C184898388 @default.
- W1994331036 hasConcept C186060115 @default.
- W1994331036 hasConcept C202444582 @default.
- W1994331036 hasConcept C205649164 @default.
- W1994331036 hasConcept C27438332 @default.
- W1994331036 hasConcept C2776133958 @default.
- W1994331036 hasConcept C33676613 @default.
- W1994331036 hasConcept C33923547 @default.
- W1994331036 hasConcept C41008148 @default.
- W1994331036 hasConcept C62649853 @default.
- W1994331036 hasConcept C71924100 @default.
- W1994331036 hasConcept C86803240 @default.
- W1994331036 hasConcept C8880873 @default.
- W1994331036 hasConceptScore W1994331036C11413529 @default.