Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007624162> ?p ?o ?g. }
- W2007624162 endingPage "358" @default.
- W2007624162 startingPage "355" @default.
- W2007624162 abstract "The prediction of protein secondary structure is a classical problem in bioinformatics, and in the past few years several machine learning techniques have been proposed to attack it. From an abstract pattern recognition viewpoint, the problem can be formulated as a (continuous) consistent labeling problem, whereby one has to assign symbolic labels to a set of objects by taking into account potential constraints between nearby objects. Motivated by this observation, in this paper we propose a new approach to the problem based on (optimally trained) relaxation labeling algorithms, a well-known class of iterative procedures that aim at reducing labeling ambiguities and achieving global consistency through a parallel exploitation of local information. Preliminary experiments performed on standard benchmark data confirm the effectiveness of the approach as compared to standard state-of-the-art machine learning predictors." @default.
- W2007624162 created "2016-06-24" @default.
- W2007624162 creator A5019421489 @default.
- W2007624162 creator A5088359990 @default.
- W2007624162 date "2004-08-23" @default.
- W2007624162 modified "2023-09-23" @default.
- W2007624162 title "Relaxation labeling processes for protein secondary structure prediction" @default.
- W2007624162 cites W1482147306 @default.
- W2007624162 cites W1498183065 @default.
- W2007624162 cites W1535147726 @default.
- W2007624162 cites W1549847953 @default.
- W2007624162 cites W1979622972 @default.
- W2007624162 cites W2006343380 @default.
- W2007624162 cites W2013136212 @default.
- W2007624162 cites W2041369927 @default.
- W2007624162 cites W2057289558 @default.
- W2007624162 cites W2072649575 @default.
- W2007624162 cites W2085835701 @default.
- W2007624162 cites W2093829413 @default.
- W2007624162 cites W2100890997 @default.
- W2007624162 cites W2105038716 @default.
- W2007624162 cites W2107792892 @default.
- W2007624162 cites W2119423166 @default.
- W2007624162 cites W2123504579 @default.
- W2007624162 cites W2127053313 @default.
- W2007624162 cites W2129245324 @default.
- W2007624162 cites W2132549764 @default.
- W2007624162 cites W2133671888 @default.
- W2007624162 cites W2134299061 @default.
- W2007624162 cites W2137983211 @default.
- W2007624162 cites W2156798505 @default.
- W2007624162 cites W2165959773 @default.
- W2007624162 cites W3146803896 @default.
- W2007624162 cites W49486804 @default.
- W2007624162 doi "https://doi.org/10.1109/icpr.2004.761" @default.
- W2007624162 hasPublicationYear "2004" @default.
- W2007624162 type Work @default.
- W2007624162 sameAs 2007624162 @default.
- W2007624162 citedByCount "0" @default.
- W2007624162 crossrefType "proceedings-article" @default.
- W2007624162 hasAuthorship W2007624162A5019421489 @default.
- W2007624162 hasAuthorship W2007624162A5088359990 @default.
- W2007624162 hasConcept C11413529 @default.
- W2007624162 hasConcept C119857082 @default.
- W2007624162 hasConcept C124101348 @default.
- W2007624162 hasConcept C13280743 @default.
- W2007624162 hasConcept C153180895 @default.
- W2007624162 hasConcept C154945302 @default.
- W2007624162 hasConcept C15744967 @default.
- W2007624162 hasConcept C177264268 @default.
- W2007624162 hasConcept C185798385 @default.
- W2007624162 hasConcept C199360897 @default.
- W2007624162 hasConcept C205649164 @default.
- W2007624162 hasConcept C2776029896 @default.
- W2007624162 hasConcept C2776436953 @default.
- W2007624162 hasConcept C2777212361 @default.
- W2007624162 hasConcept C41008148 @default.
- W2007624162 hasConcept C48103436 @default.
- W2007624162 hasConcept C77805123 @default.
- W2007624162 hasConceptScore W2007624162C11413529 @default.
- W2007624162 hasConceptScore W2007624162C119857082 @default.
- W2007624162 hasConceptScore W2007624162C124101348 @default.
- W2007624162 hasConceptScore W2007624162C13280743 @default.
- W2007624162 hasConceptScore W2007624162C153180895 @default.
- W2007624162 hasConceptScore W2007624162C154945302 @default.
- W2007624162 hasConceptScore W2007624162C15744967 @default.
- W2007624162 hasConceptScore W2007624162C177264268 @default.
- W2007624162 hasConceptScore W2007624162C185798385 @default.
- W2007624162 hasConceptScore W2007624162C199360897 @default.
- W2007624162 hasConceptScore W2007624162C205649164 @default.
- W2007624162 hasConceptScore W2007624162C2776029896 @default.
- W2007624162 hasConceptScore W2007624162C2776436953 @default.
- W2007624162 hasConceptScore W2007624162C2777212361 @default.
- W2007624162 hasConceptScore W2007624162C41008148 @default.
- W2007624162 hasConceptScore W2007624162C48103436 @default.
- W2007624162 hasConceptScore W2007624162C77805123 @default.
- W2007624162 hasLocation W20076241621 @default.
- W2007624162 hasOpenAccess W2007624162 @default.
- W2007624162 hasPrimaryLocation W20076241621 @default.
- W2007624162 hasRelatedWork W13840495 @default.
- W2007624162 hasRelatedWork W1409283846 @default.
- W2007624162 hasRelatedWork W1480481757 @default.
- W2007624162 hasRelatedWork W1991207565 @default.
- W2007624162 hasRelatedWork W2035593643 @default.
- W2007624162 hasRelatedWork W2051052075 @default.
- W2007624162 hasRelatedWork W2062179223 @default.
- W2007624162 hasRelatedWork W2066381742 @default.
- W2007624162 hasRelatedWork W2122956714 @default.
- W2007624162 hasRelatedWork W2128028519 @default.
- W2007624162 hasRelatedWork W2140612384 @default.
- W2007624162 hasRelatedWork W2154296937 @default.
- W2007624162 hasRelatedWork W2167973699 @default.
- W2007624162 hasRelatedWork W2170811232 @default.
- W2007624162 hasRelatedWork W2395392470 @default.
- W2007624162 hasRelatedWork W2547584528 @default.
- W2007624162 hasRelatedWork W2594608700 @default.
- W2007624162 hasRelatedWork W2901287800 @default.
- W2007624162 hasRelatedWork W2943450359 @default.