Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012809478> ?p ?o ?g. }
- W2012809478 endingPage "26" @default.
- W2012809478 startingPage "6" @default.
- W2012809478 abstract "Expressions enabling systematic compilation of Hamiltonian and overlap matrix elements for an antisymmetrized multiterm geminal product trial function are derived, using double coset (DC) decompositions and subgroup adapted irreducible representations of the symmetric group, SN. The trial function may describe an even electron atomic or molecular system in any total spin eigenstate, and the geminals may be nonorthogonal, have arbitrary permutational symmetry, and be explicit functions of interelectronic distance. A DC decomposition is used to factor out permutations not exchanging particle labels between geminals (elements of the interior pair group, Sn2, n≡N/2). This reduces the sum over N! permutations to a sum over DC generators. If the irreducible representation λ (S) of SN is adapted to Sn2 each geminal is projected into its singlet or triplet component. The DC generators are chosen such that each has the form QP, where Q permutes odd particle labels only and P is a permutation of geminals (element of the exterior pair group, S?). With the aid of matrices called DC symbols an algorithm for these generators is derived, and used to find explicit sets for N=2, 4, 6, and 8. The N-electron Hamiltonian and overlap integrals arising with a particular DC generator QP are factored into products of smaller integrals, called cluster integrals, according to the cycle structure of Q. The cluster integrals are of only three main types—overlap, one-cluster energy, and two-cluster energy (analogs of orbital overlap, 1-electron, and 2-electron integrals) —and are further classified by order (number of geminals), geminal permutational symmetry, and in some cases pattern of connection. Matrix element compilation is systematic in that all N-electron integrals are products of a relatively small number of different types of cluster integral, and that N-electron integrals with similar factored forms are collected together in the summation. From counting the different cluster integrals required, it is concluded that a geminal product calculation not using orbital expansion is feasible only for systems with eight or less electrons. In some cases semiempirical calculations with correlated geminals might be considered, for the more complex cluster integrals (those of high order) are quite small for a system approximating a collection of localized electron pairs. The matrix element expressions are specialized for three cases—all geminals being singlets, strongly orthogonal geminals, and identical geminals. Comparison is made with a recently developed diagrammatical method." @default.
- W2012809478 created "2016-06-24" @default.
- W2012809478 creator A5054192060 @default.
- W2012809478 creator A5068770018 @default.
- W2012809478 date "1976-01-01" @default.
- W2012809478 modified "2023-09-23" @default.
- W2012809478 title "A group theoretical approach to geminal product matrix elements" @default.
- W2012809478 cites W1503941588 @default.
- W2012809478 cites W1592684465 @default.
- W2012809478 cites W1618061797 @default.
- W2012809478 cites W1967240119 @default.
- W2012809478 cites W1996601907 @default.
- W2012809478 cites W2000897470 @default.
- W2012809478 cites W2001178653 @default.
- W2012809478 cites W2001915583 @default.
- W2012809478 cites W2012932237 @default.
- W2012809478 cites W2014209007 @default.
- W2012809478 cites W2015438457 @default.
- W2012809478 cites W2017578605 @default.
- W2012809478 cites W2031620097 @default.
- W2012809478 cites W2054388307 @default.
- W2012809478 cites W2070804064 @default.
- W2012809478 cites W2074474245 @default.
- W2012809478 cites W2075367005 @default.
- W2012809478 cites W2078010677 @default.
- W2012809478 cites W2079443528 @default.
- W2012809478 cites W2080927378 @default.
- W2012809478 cites W2089064777 @default.
- W2012809478 cites W2092805710 @default.
- W2012809478 cites W2094631283 @default.
- W2012809478 cites W2104622249 @default.
- W2012809478 cites W2112777631 @default.
- W2012809478 cites W2131800859 @default.
- W2012809478 cites W2132347175 @default.
- W2012809478 cites W2159449161 @default.
- W2012809478 cites W2315305048 @default.
- W2012809478 cites W2321508066 @default.
- W2012809478 cites W29780732 @default.
- W2012809478 cites W159568500 @default.
- W2012809478 doi "https://doi.org/10.1063/1.431912" @default.
- W2012809478 hasPublicationYear "1976" @default.
- W2012809478 type Work @default.
- W2012809478 sameAs 2012809478 @default.
- W2012809478 citedByCount "12" @default.
- W2012809478 countsByYear W20128094782022 @default.
- W2012809478 crossrefType "journal-article" @default.
- W2012809478 hasAuthorship W2012809478A5054192060 @default.
- W2012809478 hasAuthorship W2012809478A5068770018 @default.
- W2012809478 hasConcept C113603373 @default.
- W2012809478 hasConcept C114614502 @default.
- W2012809478 hasConcept C121332964 @default.
- W2012809478 hasConcept C126255220 @default.
- W2012809478 hasConcept C128622974 @default.
- W2012809478 hasConcept C130787639 @default.
- W2012809478 hasConcept C158693339 @default.
- W2012809478 hasConcept C181500209 @default.
- W2012809478 hasConcept C185592680 @default.
- W2012809478 hasConcept C19637589 @default.
- W2012809478 hasConcept C21308566 @default.
- W2012809478 hasConcept C24890656 @default.
- W2012809478 hasConcept C2779758233 @default.
- W2012809478 hasConcept C32909587 @default.
- W2012809478 hasConcept C33062035 @default.
- W2012809478 hasConcept C33923547 @default.
- W2012809478 hasConcept C37914503 @default.
- W2012809478 hasConcept C62520636 @default.
- W2012809478 hasConcept C71240020 @default.
- W2012809478 hasConcept C92957085 @default.
- W2012809478 hasConceptScore W2012809478C113603373 @default.
- W2012809478 hasConceptScore W2012809478C114614502 @default.
- W2012809478 hasConceptScore W2012809478C121332964 @default.
- W2012809478 hasConceptScore W2012809478C126255220 @default.
- W2012809478 hasConceptScore W2012809478C128622974 @default.
- W2012809478 hasConceptScore W2012809478C130787639 @default.
- W2012809478 hasConceptScore W2012809478C158693339 @default.
- W2012809478 hasConceptScore W2012809478C181500209 @default.
- W2012809478 hasConceptScore W2012809478C185592680 @default.
- W2012809478 hasConceptScore W2012809478C19637589 @default.
- W2012809478 hasConceptScore W2012809478C21308566 @default.
- W2012809478 hasConceptScore W2012809478C24890656 @default.
- W2012809478 hasConceptScore W2012809478C2779758233 @default.
- W2012809478 hasConceptScore W2012809478C32909587 @default.
- W2012809478 hasConceptScore W2012809478C33062035 @default.
- W2012809478 hasConceptScore W2012809478C33923547 @default.
- W2012809478 hasConceptScore W2012809478C37914503 @default.
- W2012809478 hasConceptScore W2012809478C62520636 @default.
- W2012809478 hasConceptScore W2012809478C71240020 @default.
- W2012809478 hasConceptScore W2012809478C92957085 @default.
- W2012809478 hasIssue "1" @default.
- W2012809478 hasLocation W20128094781 @default.
- W2012809478 hasOpenAccess W2012809478 @default.
- W2012809478 hasPrimaryLocation W20128094781 @default.
- W2012809478 hasRelatedWork W1784384613 @default.
- W2012809478 hasRelatedWork W2256228157 @default.
- W2012809478 hasRelatedWork W2939002107 @default.
- W2012809478 hasRelatedWork W3044594251 @default.
- W2012809478 hasRelatedWork W3084228108 @default.
- W2012809478 hasRelatedWork W4221142411 @default.