Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018151011> ?p ?o ?g. }
- W2018151011 endingPage "314" @default.
- W2018151011 startingPage "287" @default.
- W2018151011 abstract "Synchrotron-based photoemission spectroscopy and low-energy electron diffraction were used to study the reaction of water vapor at 300 K and different water vapor pressures, p(H2O), ranging from 5×10−9 Torr to 10−3 Torr (3 min exposure at each pressure), with vacuum-cleaved MgO(100) surfaces that had low (5–10%) defect densities. The O 1s, Mg 2p, and O 2s/VB spectra were acquired at photon energies chosen to optimize surface sensitivity. O 1s and O 2s/VB spectra are sensitive to water adsorption onto MgO(100) even at very low water vapor exposures [<10−8 Torr for 3 min (<1.8 L)], whereas Mg 2p spectra show significant changes only for high exposures [≥10−4 Torr for 3 min (≥1.8×104 L)]. Comparison of these spectra with similar spectra of MgO(100) surfaces immersed in bulk water and of polycrystalline Mg(OH)2 indicates that water chemisorbs dissociatively in two distinct stages on “low defect” MgO(100) surfaces, forming surface hydroxyl groups. The first stage occurs at water vapor exposures ≤3×10−5 Torr for 3 min (≤5.4×103 L) or for 30 min (≤5.4×104L) and involves a relatively fast reaction with surface defects (corner and edge-step sites and point defects) comprising 5–10% of the surface sites, in agreement with recent first-principles electronic structure calculations. The second stage occurs at higher water vapor pressures (≥10−4 Torr for 3 min) and involves dissociative chemisorption of water on terrace sites, which is not predicted by recent first-principles calculations. The apparent sticking coefficient for the first reaction stage (≥0.16) is about four orders of magnitude larger than that for the second reaction stage (≥3×10−5), suggesting that the second reaction stage requires significantly more activation energy than the first stage. Our results also suggest that the hydroxylation reaction is not sensitive to exposure time below a threshold pressure of ≈10−4 Torr. Although both kinetic and thermodynamic interpretations are possible, a thermodynamic analysis of the hydroxylation reaction (using bulk solid free energies) predicts approximately the same threshold pressure as observed. After the surface is fully hydroxylated, additional water can be physisorbed on the hydroxyl layer. Analysis of O 1s spectra taken from the same surface but at different photon energies indicates that hydroxyls are formed predominantly on the surface and not in the bulk under these exposure conditions. Our experimental data also show that the 4–6 eV electrons used to mitigate surface change during the photoemission experiments have no effect on the dissociation of water on the MgO(100) surface." @default.
- W2018151011 created "2016-06-24" @default.
- W2018151011 creator A5002171426 @default.
- W2018151011 creator A5020569471 @default.
- W2018151011 creator A5033446826 @default.
- W2018151011 creator A5077153113 @default.
- W2018151011 date "1998-09-01" @default.
- W2018151011 modified "2023-10-17" @default.
- W2018151011 title "Reaction of water with MgO(100) surfaces. Part I:" @default.
- W2018151011 cites W1576148471 @default.
- W2018151011 cites W1665339685 @default.
- W2018151011 cites W1963865072 @default.
- W2018151011 cites W1968035080 @default.
- W2018151011 cites W1978697091 @default.
- W2018151011 cites W1984043434 @default.
- W2018151011 cites W1990406526 @default.
- W2018151011 cites W1991259022 @default.
- W2018151011 cites W1997355273 @default.
- W2018151011 cites W1998610309 @default.
- W2018151011 cites W1998839086 @default.
- W2018151011 cites W1999226520 @default.
- W2018151011 cites W1999962626 @default.
- W2018151011 cites W2007057942 @default.
- W2018151011 cites W2007778215 @default.
- W2018151011 cites W2008995709 @default.
- W2018151011 cites W2010112990 @default.
- W2018151011 cites W2010784362 @default.
- W2018151011 cites W2015023009 @default.
- W2018151011 cites W2015542603 @default.
- W2018151011 cites W2020229545 @default.
- W2018151011 cites W2024850663 @default.
- W2018151011 cites W2027406213 @default.
- W2018151011 cites W2028115503 @default.
- W2018151011 cites W2032744579 @default.
- W2018151011 cites W2036910689 @default.
- W2018151011 cites W2037472972 @default.
- W2018151011 cites W2044833106 @default.
- W2018151011 cites W2048334667 @default.
- W2018151011 cites W2048741651 @default.
- W2018151011 cites W2049640245 @default.
- W2018151011 cites W2051325544 @default.
- W2018151011 cites W2057311198 @default.
- W2018151011 cites W2061432436 @default.
- W2018151011 cites W2064089133 @default.
- W2018151011 cites W2068186073 @default.
- W2018151011 cites W2073179911 @default.
- W2018151011 cites W2078568698 @default.
- W2018151011 cites W2082181924 @default.
- W2018151011 cites W2088817434 @default.
- W2018151011 cites W2089646671 @default.
- W2018151011 cites W2089933270 @default.
- W2018151011 cites W2090698783 @default.
- W2018151011 cites W2091190993 @default.
- W2018151011 cites W2106603672 @default.
- W2018151011 cites W2116949967 @default.
- W2018151011 cites W2170151011 @default.
- W2018151011 cites W2171792133 @default.
- W2018151011 cites W2334610556 @default.
- W2018151011 cites W2926897263 @default.
- W2018151011 cites W4254526530 @default.
- W2018151011 doi "https://doi.org/10.1016/s0039-6028(98)00444-0" @default.
- W2018151011 hasPublicationYear "1998" @default.
- W2018151011 type Work @default.
- W2018151011 sameAs 2018151011 @default.
- W2018151011 citedByCount "144" @default.
- W2018151011 countsByYear W20181510112012 @default.
- W2018151011 countsByYear W20181510112013 @default.
- W2018151011 countsByYear W20181510112014 @default.
- W2018151011 countsByYear W20181510112015 @default.
- W2018151011 countsByYear W20181510112016 @default.
- W2018151011 countsByYear W20181510112017 @default.
- W2018151011 countsByYear W20181510112018 @default.
- W2018151011 countsByYear W20181510112019 @default.
- W2018151011 countsByYear W20181510112020 @default.
- W2018151011 countsByYear W20181510112021 @default.
- W2018151011 countsByYear W20181510112022 @default.
- W2018151011 countsByYear W20181510112023 @default.
- W2018151011 crossrefType "journal-article" @default.
- W2018151011 hasAuthorship W2018151011A5002171426 @default.
- W2018151011 hasAuthorship W2018151011A5020569471 @default.
- W2018151011 hasAuthorship W2018151011A5033446826 @default.
- W2018151011 hasAuthorship W2018151011A5077153113 @default.
- W2018151011 hasBestOaLocation W20181510111 @default.
- W2018151011 hasConcept C113196181 @default.
- W2018151011 hasConcept C121332964 @default.
- W2018151011 hasConcept C1276947 @default.
- W2018151011 hasConcept C137637335 @default.
- W2018151011 hasConcept C147534773 @default.
- W2018151011 hasConcept C147789679 @default.
- W2018151011 hasConcept C150394285 @default.
- W2018151011 hasConcept C178790620 @default.
- W2018151011 hasConcept C185592680 @default.
- W2018151011 hasConcept C197843891 @default.
- W2018151011 hasConcept C30646810 @default.
- W2018151011 hasConcept C33790079 @default.
- W2018151011 hasConcept C43617362 @default.
- W2018151011 hasConcept C4839761 @default.
- W2018151011 hasConcept C57410435 @default.