Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022996988> ?p ?o ?g. }
- W2022996988 endingPage "2571" @default.
- W2022996988 startingPage "2550" @default.
- W2022996988 abstract "Collisional processes occurring within an atomic vapor can be conveniently described in terms of collision kernels. The population kernel ${W}_{mathrm{ii}}({stackrel{ensuremath{rightarrow}}{mathrm{v}}}^{ensuremath{'}}ensuremath{rightarrow}stackrel{ensuremath{rightarrow}}{mathrm{v}})$ gives the probability density per unit time that an active atom in state $i$ undergoes a collision with a perturber that changes the active atom's velocity from ${stackrel{ensuremath{rightarrow}}{mathrm{v}}}^{ensuremath{'}}$ to $stackrel{ensuremath{rightarrow}}{mathrm{v}}$. For active atoms in a linear superposition of states $i$ and $j$, there is an analogous coherence kernel ${W}_{mathrm{ij}}({stackrel{ensuremath{rightarrow}}{mathrm{v}}}^{ensuremath{'}}ensuremath{rightarrow}stackrel{ensuremath{rightarrow}}{mathrm{v}}) (iensuremath{ne}j)$ reflecting the effects of collisions on the off-diagonal density-matrix element ${ensuremath{rho}}_{mathrm{ij}}$. In this work, we discuss the general properties of the collision kernels which characterize a two-level active atom which, owing to the action of a radiation field, is in a linear superposition of its two levels. Using arguments based on the uncertainty principle, we show that collisions can be divided roughly into the following two categories: (1) collisions having impact parameters less than some characteristic radius which may be described classically and (2) collisions having impact parameters larger than this characteristic radius which give rise to diffractive scattering and must be treated using a quantum-mechanical theory. For the population kernels, collisions of type (1) can lead to a large-angle scattering component, while those of type (2) lead to a small-angle (diffractive) scattering component. For the coherence kernel, however, assuming that the collisional interaction for states $i$ and $j$ differ appreciably, only collisions of type (2) contribute, and the coherence kernel contains a small-angle scattering component only. The absence of a large-angle scattering component in the coherence kernel is linked to a collision-induced spatial separation of the trajectories associated with states $i$ and $j$. Interestingly enough, the width of the diffractive kernel, as measured in the laboratory frame, is found to be insensitive to the perturber to active-atom mass ratio. To illustrate these features, a specific calculation of the kernels is carried out using a hard-sphere model for the scattering. The relationship of the present description of collisions to that of traditional pressure-broadening theory in which trajectory separation effects are ignored is discussed. It is explained why traditional pressure-broadening theory correctly describes collision effects in linear spectroscopy, but fails to provide an adequate description of some saturation spectroscopy and photonecho experiments in which velocity-changing collisions associated with the coherence kernel play a significant role. An expression for the collisionally modified photon-echo amplitude is derived which clearly displays the role played by velocity-changing collisions associated with the coherence kernel." @default.
- W2022996988 created "2016-06-24" @default.
- W2022996988 creator A5041209506 @default.
- W2022996988 creator A5046418017 @default.
- W2022996988 creator A5059605086 @default.
- W2022996988 date "1982-05-01" @default.
- W2022996988 modified "2023-10-14" @default.
- W2022996988 title "Collision kernels and laser spectroscopy" @default.
- W2022996988 cites W1975336780 @default.
- W2022996988 cites W1977431015 @default.
- W2022996988 cites W1980638211 @default.
- W2022996988 cites W1981061779 @default.
- W2022996988 cites W1987344756 @default.
- W2022996988 cites W1988264748 @default.
- W2022996988 cites W1988518190 @default.
- W2022996988 cites W1992446655 @default.
- W2022996988 cites W1992958132 @default.
- W2022996988 cites W1995421712 @default.
- W2022996988 cites W2001051098 @default.
- W2022996988 cites W2010689446 @default.
- W2022996988 cites W2014255299 @default.
- W2022996988 cites W2021528858 @default.
- W2022996988 cites W2023381927 @default.
- W2022996988 cites W2025685126 @default.
- W2022996988 cites W2037043614 @default.
- W2022996988 cites W2040317042 @default.
- W2022996988 cites W2044199909 @default.
- W2022996988 cites W2051711550 @default.
- W2022996988 cites W2055687868 @default.
- W2022996988 cites W2057292407 @default.
- W2022996988 cites W2058775970 @default.
- W2022996988 cites W2067941319 @default.
- W2022996988 cites W2072823210 @default.
- W2022996988 cites W2076776957 @default.
- W2022996988 cites W4231354814 @default.
- W2022996988 cites W4234507398 @default.
- W2022996988 cites W4249830008 @default.
- W2022996988 cites W950889939 @default.
- W2022996988 doi "https://doi.org/10.1103/physreva.25.2550" @default.
- W2022996988 hasPublicationYear "1982" @default.
- W2022996988 type Work @default.
- W2022996988 sameAs 2022996988 @default.
- W2022996988 citedByCount "86" @default.
- W2022996988 countsByYear W20229969882012 @default.
- W2022996988 countsByYear W20229969882013 @default.
- W2022996988 countsByYear W20229969882014 @default.
- W2022996988 countsByYear W20229969882016 @default.
- W2022996988 countsByYear W20229969882018 @default.
- W2022996988 countsByYear W20229969882019 @default.
- W2022996988 countsByYear W20229969882022 @default.
- W2022996988 countsByYear W20229969882023 @default.
- W2022996988 crossrefType "journal-article" @default.
- W2022996988 hasAuthorship W2022996988A5041209506 @default.
- W2022996988 hasAuthorship W2022996988A5046418017 @default.
- W2022996988 hasAuthorship W2022996988A5059605086 @default.
- W2022996988 hasConcept C121332964 @default.
- W2022996988 hasConcept C144024400 @default.
- W2022996988 hasConcept C149635348 @default.
- W2022996988 hasConcept C149923435 @default.
- W2022996988 hasConcept C178635117 @default.
- W2022996988 hasConcept C184779094 @default.
- W2022996988 hasConcept C191486275 @default.
- W2022996988 hasConcept C27753989 @default.
- W2022996988 hasConcept C2908647359 @default.
- W2022996988 hasConcept C38652104 @default.
- W2022996988 hasConcept C41008148 @default.
- W2022996988 hasConcept C58312451 @default.
- W2022996988 hasConcept C62520636 @default.
- W2022996988 hasConceptScore W2022996988C121332964 @default.
- W2022996988 hasConceptScore W2022996988C144024400 @default.
- W2022996988 hasConceptScore W2022996988C149635348 @default.
- W2022996988 hasConceptScore W2022996988C149923435 @default.
- W2022996988 hasConceptScore W2022996988C178635117 @default.
- W2022996988 hasConceptScore W2022996988C184779094 @default.
- W2022996988 hasConceptScore W2022996988C191486275 @default.
- W2022996988 hasConceptScore W2022996988C27753989 @default.
- W2022996988 hasConceptScore W2022996988C2908647359 @default.
- W2022996988 hasConceptScore W2022996988C38652104 @default.
- W2022996988 hasConceptScore W2022996988C41008148 @default.
- W2022996988 hasConceptScore W2022996988C58312451 @default.
- W2022996988 hasConceptScore W2022996988C62520636 @default.
- W2022996988 hasIssue "5" @default.
- W2022996988 hasLocation W20229969881 @default.
- W2022996988 hasOpenAccess W2022996988 @default.
- W2022996988 hasPrimaryLocation W20229969881 @default.
- W2022996988 hasRelatedWork W1954625133 @default.
- W2022996988 hasRelatedWork W1975442986 @default.
- W2022996988 hasRelatedWork W1994882177 @default.
- W2022996988 hasRelatedWork W2004326570 @default.
- W2022996988 hasRelatedWork W2026000083 @default.
- W2022996988 hasRelatedWork W2045131011 @default.
- W2022996988 hasRelatedWork W2050516334 @default.
- W2022996988 hasRelatedWork W2054862909 @default.
- W2022996988 hasRelatedWork W2271414796 @default.
- W2022996988 hasRelatedWork W2353161834 @default.
- W2022996988 hasVolume "25" @default.
- W2022996988 isParatext "false" @default.
- W2022996988 isRetracted "false" @default.