Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036692646> ?p ?o ?g. }
- W2036692646 endingPage "132" @default.
- W2036692646 startingPage "121" @default.
- W2036692646 abstract "The possible contributions of the mechanochemical triggering effect to the enzymatic activation of the carbon–cobalt bond of coenzyme B12 (5′-deoxyadenosylcobalamin, AdoCbl) for homolytic cleavage have been studied by molecular modeling and semi-empirical molecular orbital calculations. Classically, this effect has envisioned enzymatic compression of the axial Co–N bond in the ground state to cause upward folding of the corrin ring and subsequent sterically induced distortion of the Co–C bond leading to its destabilization. The models of this process show that in both methylcobalamin (CH3Cbl) and AdoCbl, compression of the axial Co–N bond does engender upward folding of the corrin ring, and that the extent of such upward folding is smaller in an analog in which the normal 5,6-dimethylbenzimidazole axial ligand is replaced by the sterically smaller ligand, imidazole (CH3(Im)Cbl and Ado(Im)Cbl). Furthermore, in AdoCbl, this upward folding of the corrin is accompanied by increases in the carbon–cobalt bond length and in the Co–C–C bond angle (which are also less pronounced in Ado(Im)Cbl), and which indicate that the Co–C bond is indeed destabilized by this mechanism. However, these effects on the Co–C bond are small, and destabilization of this bond by this mechanism is unlikely to contribute more than ca. 3 kcal mol−1 towards the enzymatic catalysis of Co–C bond homolysis, far short of the observed ca. 14 kcal mol−1. A second version of mechanochemical triggering, in which compression of the axial Co–N bond in the transition state for Co–C bond homolysis stabilizes the transition state by increased Co–N orbital overlap, has also been investigated. Stretching the Co–C bond to simulate the approach to the transition state was found to result in an upward folding of the corrin ring, a slight decrease in the axial Co–N bond length, a slight displacement of the metal atom from the plane of the equatorial nitrogens towards the “lower” axial ligand, and a decrease in strain energy amounting to about 8 kcal mol−1 for both AdoCbl and Ado(Im)Cbl. In such modeled transition states, compression of the axial Co–N bond to just below 2.0 Å (the distance subsequently found to provide maximal stabilization of the transition state by increased orbital overlap) required about 4 kcal mol−1 for AdoCbl, and about 2.5 kcal mol−1 for Ado(Im)Cbl. ZINDO/1 calculations on slightly simplified structures showed that maximal electronic stabilization of the transition state by about 10 kcal mol−1 occurred at an axial Co–N bond distance of 1.96 Å for both AdoCbl and Ado(Im)Cbl. The net result is that this type of transition state mechanochemical triggering can provide 14 kcal mol−1 of transition state stabilization for AdoCbl, and about 15.5 kcal mol−1 for the Ado(Im)Cbl, enough to completely explain the observed enzymatic catalysis. These results are discussed in the light of current knowledge about class I AdoCbl-dependent enzymes, in which the coenzyme is bound in its “base-off” conformation, with the lower axial ligand position occupied by the imidazole moiety of an active site histidine residue, and the class II enzymes, in which AdoCbl binds to the enzyme in its “base-on” conformation, and the pendent 5,6-dimethylbenzimidazole base remains coordinated to the metal during Co–C bond activation." @default.
- W2036692646 created "2016-06-24" @default.
- W2036692646 creator A5001733948 @default.
- W2036692646 creator A5080064731 @default.
- W2036692646 date "2001-01-01" @default.
- W2036692646 modified "2023-09-26" @default.
- W2036692646 title "Molecular modeling of the mechanochemical triggering mechanism for catalysis of carbon–cobalt bond homolysis in coenzyme B12" @default.
- W2036692646 cites W1502068659 @default.
- W2036692646 cites W1708984004 @default.
- W2036692646 cites W1967781376 @default.
- W2036692646 cites W1967961880 @default.
- W2036692646 cites W1969058620 @default.
- W2036692646 cites W1970714097 @default.
- W2036692646 cites W1974685706 @default.
- W2036692646 cites W1975979982 @default.
- W2036692646 cites W1978871721 @default.
- W2036692646 cites W1984779298 @default.
- W2036692646 cites W1988099644 @default.
- W2036692646 cites W1989199714 @default.
- W2036692646 cites W1991409706 @default.
- W2036692646 cites W1995677718 @default.
- W2036692646 cites W1996786961 @default.
- W2036692646 cites W1999656874 @default.
- W2036692646 cites W2000475214 @default.
- W2036692646 cites W2005432797 @default.
- W2036692646 cites W2010763479 @default.
- W2036692646 cites W2011551228 @default.
- W2036692646 cites W2012493115 @default.
- W2036692646 cites W2012495714 @default.
- W2036692646 cites W2013183108 @default.
- W2036692646 cites W2016246519 @default.
- W2036692646 cites W2016421990 @default.
- W2036692646 cites W2016494701 @default.
- W2036692646 cites W2020624717 @default.
- W2036692646 cites W2020956095 @default.
- W2036692646 cites W2029902318 @default.
- W2036692646 cites W2032354331 @default.
- W2036692646 cites W2035266068 @default.
- W2036692646 cites W2036673885 @default.
- W2036692646 cites W2038467942 @default.
- W2036692646 cites W2045709533 @default.
- W2036692646 cites W2046567944 @default.
- W2036692646 cites W2046915556 @default.
- W2036692646 cites W2048036692 @default.
- W2036692646 cites W2050514409 @default.
- W2036692646 cites W2050609553 @default.
- W2036692646 cites W2053731321 @default.
- W2036692646 cites W2057182104 @default.
- W2036692646 cites W2058177517 @default.
- W2036692646 cites W2058653907 @default.
- W2036692646 cites W2064396466 @default.
- W2036692646 cites W2065749297 @default.
- W2036692646 cites W2066863293 @default.
- W2036692646 cites W2068455867 @default.
- W2036692646 cites W2069134338 @default.
- W2036692646 cites W2070450027 @default.
- W2036692646 cites W2071394380 @default.
- W2036692646 cites W2075829782 @default.
- W2036692646 cites W2076605403 @default.
- W2036692646 cites W2076824023 @default.
- W2036692646 cites W2080244743 @default.
- W2036692646 cites W2080760724 @default.
- W2036692646 cites W2085121324 @default.
- W2036692646 cites W2091979836 @default.
- W2036692646 cites W2092231176 @default.
- W2036692646 cites W2094180349 @default.
- W2036692646 cites W2111413667 @default.
- W2036692646 cites W2117236066 @default.
- W2036692646 cites W2154602622 @default.
- W2036692646 cites W2155430111 @default.
- W2036692646 cites W217712505 @default.
- W2036692646 cites W3005472204 @default.
- W2036692646 cites W3202518454 @default.
- W2036692646 cites W3206291250 @default.
- W2036692646 doi "https://doi.org/10.1016/s0162-0134(00)00188-4" @default.
- W2036692646 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11237251" @default.
- W2036692646 hasPublicationYear "2001" @default.
- W2036692646 type Work @default.
- W2036692646 sameAs 2036692646 @default.
- W2036692646 citedByCount "35" @default.
- W2036692646 countsByYear W20366926462012 @default.
- W2036692646 countsByYear W20366926462013 @default.
- W2036692646 countsByYear W20366926462015 @default.
- W2036692646 countsByYear W20366926462016 @default.
- W2036692646 countsByYear W20366926462021 @default.
- W2036692646 crossrefType "journal-article" @default.
- W2036692646 hasAuthorship W2036692646A5001733948 @default.
- W2036692646 hasAuthorship W2036692646A5080064731 @default.
- W2036692646 hasConcept C116569031 @default.
- W2036692646 hasConcept C139066938 @default.
- W2036692646 hasConcept C161790260 @default.
- W2036692646 hasConcept C170493617 @default.
- W2036692646 hasConcept C175689099 @default.
- W2036692646 hasConcept C178790620 @default.
- W2036692646 hasConcept C181199279 @default.
- W2036692646 hasConcept C185592680 @default.
- W2036692646 hasConcept C197957613 @default.
- W2036692646 hasConcept C201194858 @default.