Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038224551> ?p ?o ?g. }
- W2038224551 abstract "We investigate the detectability of modules in large networks when the number of modules is not known in advance. We employ the minimum description length principle which seeks to minimize the total amount of information required to describe the network, and avoid overfitting. According to this criterion, we obtain general bounds on the detectability of any prescribed block structure, given the number of nodes and edges in the sampled network. We also obtain that the maximum number of detectable blocks scales as $sqrt{N}$, where $N$ is the number of nodes in the network, for a fixed average degree $⟨k⟩$. We also show that the simplicity of the minimum description length approach yields an efficient multilevel Monte Carlo inference algorithm with a complexity of $O(ensuremath{tau}Nmathrm{log}N)$, if the number of blocks is unknown, and $O(ensuremath{tau}N)$ if it is known, where $ensuremath{tau}$ is the mixing time of the Markov chain. We illustrate the application of the method on a large network of actors and films with over ${10}^{6}$ edges, and a dissortative, bipartite block structure." @default.
- W2038224551 created "2016-06-24" @default.
- W2038224551 creator A5022414084 @default.
- W2038224551 date "2013-04-05" @default.
- W2038224551 modified "2023-10-14" @default.
- W2038224551 title "Parsimonious Module Inference in Large Networks" @default.
- W2038224551 cites W1524273267 @default.
- W2038224551 cites W1871641673 @default.
- W2038224551 cites W1971421925 @default.
- W2038224551 cites W1972675431 @default.
- W2038224551 cites W1976412347 @default.
- W2038224551 cites W1988295556 @default.
- W2038224551 cites W1994321911 @default.
- W2038224551 cites W1995996823 @default.
- W2038224551 cites W2004531067 @default.
- W2038224551 cites W2012662151 @default.
- W2038224551 cites W2014259951 @default.
- W2038224551 cites W2018758196 @default.
- W2038224551 cites W2023655578 @default.
- W2038224551 cites W2024128809 @default.
- W2038224551 cites W2025543856 @default.
- W2038224551 cites W2044808496 @default.
- W2038224551 cites W2048713010 @default.
- W2038224551 cites W2056760934 @default.
- W2038224551 cites W2064274783 @default.
- W2038224551 cites W2095189226 @default.
- W2038224551 cites W2095293504 @default.
- W2038224551 cites W2101580881 @default.
- W2038224551 cites W2102907934 @default.
- W2038224551 cites W2104615987 @default.
- W2038224551 cites W2111547480 @default.
- W2038224551 cites W2115364079 @default.
- W2038224551 cites W2116433231 @default.
- W2038224551 cites W2119998616 @default.
- W2038224551 cites W2127048411 @default.
- W2038224551 cites W2128366083 @default.
- W2038224551 cites W2138309709 @default.
- W2038224551 cites W2139818818 @default.
- W2038224551 cites W2144940189 @default.
- W2038224551 cites W2158863573 @default.
- W2038224551 cites W2168346701 @default.
- W2038224551 cites W3098765153 @default.
- W2038224551 cites W3100748105 @default.
- W2038224551 cites W3102191718 @default.
- W2038224551 cites W3103168877 @default.
- W2038224551 cites W3123545922 @default.
- W2038224551 cites W4299562649 @default.
- W2038224551 doi "https://doi.org/10.1103/physrevlett.110.148701" @default.
- W2038224551 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25167049" @default.
- W2038224551 hasPublicationYear "2013" @default.
- W2038224551 type Work @default.
- W2038224551 sameAs 2038224551 @default.
- W2038224551 citedByCount "157" @default.
- W2038224551 countsByYear W20382245512013 @default.
- W2038224551 countsByYear W20382245512014 @default.
- W2038224551 countsByYear W20382245512015 @default.
- W2038224551 countsByYear W20382245512016 @default.
- W2038224551 countsByYear W20382245512017 @default.
- W2038224551 countsByYear W20382245512018 @default.
- W2038224551 countsByYear W20382245512019 @default.
- W2038224551 countsByYear W20382245512020 @default.
- W2038224551 countsByYear W20382245512021 @default.
- W2038224551 countsByYear W20382245512022 @default.
- W2038224551 countsByYear W20382245512023 @default.
- W2038224551 crossrefType "journal-article" @default.
- W2038224551 hasAuthorship W2038224551A5022414084 @default.
- W2038224551 hasBestOaLocation W20382245512 @default.
- W2038224551 hasConcept C105795698 @default.
- W2038224551 hasConcept C111350023 @default.
- W2038224551 hasConcept C11413529 @default.
- W2038224551 hasConcept C114614502 @default.
- W2038224551 hasConcept C118615104 @default.
- W2038224551 hasConcept C121332964 @default.
- W2038224551 hasConcept C132525143 @default.
- W2038224551 hasConcept C154945302 @default.
- W2038224551 hasConcept C19499675 @default.
- W2038224551 hasConcept C197657726 @default.
- W2038224551 hasConcept C22019652 @default.
- W2038224551 hasConcept C24890656 @default.
- W2038224551 hasConcept C2775997480 @default.
- W2038224551 hasConcept C2776214188 @default.
- W2038224551 hasConcept C2777210771 @default.
- W2038224551 hasConcept C2779982251 @default.
- W2038224551 hasConcept C33923547 @default.
- W2038224551 hasConcept C41008148 @default.
- W2038224551 hasConcept C50644808 @default.
- W2038224551 hasConcept C63553672 @default.
- W2038224551 hasConcept C73555534 @default.
- W2038224551 hasConcept C98763669 @default.
- W2038224551 hasConceptScore W2038224551C105795698 @default.
- W2038224551 hasConceptScore W2038224551C111350023 @default.
- W2038224551 hasConceptScore W2038224551C11413529 @default.
- W2038224551 hasConceptScore W2038224551C114614502 @default.
- W2038224551 hasConceptScore W2038224551C118615104 @default.
- W2038224551 hasConceptScore W2038224551C121332964 @default.
- W2038224551 hasConceptScore W2038224551C132525143 @default.
- W2038224551 hasConceptScore W2038224551C154945302 @default.
- W2038224551 hasConceptScore W2038224551C19499675 @default.
- W2038224551 hasConceptScore W2038224551C197657726 @default.
- W2038224551 hasConceptScore W2038224551C22019652 @default.