Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045987130> ?p ?o ?g. }
- W2045987130 endingPage "1000" @default.
- W2045987130 startingPage "986" @default.
- W2045987130 abstract "Accurate estimation of sediment loads is important for the management and construction of water resources projects. In the first part of this study, the convenient gene expression programming (GEP), neuro-fuzzy (NF), and artificial neural network (ANN) techniques were applied to estimate suspended sediment loads by using recorded daily river discharge and sediment load data. These models were compared with one another in terms of the coefficient of determination, root mean square error, mean absolute error, variance accounted for, and Nash-Sutcliffe statistic criteria. It was found that the GEP model performed better than the NF and ANN models. In the second part of this study, the discrete wavelet conjunction models with convenient GEP, NF, and ANN techniques were constructed and compared with one another. Comparison results indicated that the wavelet conjunction models significantly increased the accuracy of single GEP, NF, and ANN models in suspended sediment estimation. The wavelet-GEP model performed better than the wavelet-NF and wavelet-ANN models." @default.
- W2045987130 created "2016-06-24" @default.
- W2045987130 creator A5016315589 @default.
- W2045987130 creator A5044658695 @default.
- W2045987130 date "2012-09-01" @default.
- W2045987130 modified "2023-09-27" @default.
- W2045987130 title "Estimation of Daily Suspended Sediment Load by Using Wavelet Conjunction Models" @default.
- W2045987130 cites W114058489 @default.
- W2045987130 cites W182956098 @default.
- W2045987130 cites W1977556855 @default.
- W2045987130 cites W1981751431 @default.
- W2045987130 cites W1988523040 @default.
- W2045987130 cites W1988594799 @default.
- W2045987130 cites W1992176519 @default.
- W2045987130 cites W1998300065 @default.
- W2045987130 cites W1998863178 @default.
- W2045987130 cites W2000593229 @default.
- W2045987130 cites W2006599158 @default.
- W2045987130 cites W2007371851 @default.
- W2045987130 cites W2012027190 @default.
- W2045987130 cites W2012340228 @default.
- W2045987130 cites W2017703815 @default.
- W2045987130 cites W2019207321 @default.
- W2045987130 cites W2022426423 @default.
- W2045987130 cites W2025110407 @default.
- W2045987130 cites W2025590911 @default.
- W2045987130 cites W2026370822 @default.
- W2045987130 cites W2032223839 @default.
- W2045987130 cites W2036999494 @default.
- W2045987130 cites W2037460094 @default.
- W2045987130 cites W2042985051 @default.
- W2045987130 cites W2052519970 @default.
- W2045987130 cites W2053540528 @default.
- W2045987130 cites W2055107850 @default.
- W2045987130 cites W2055380929 @default.
- W2045987130 cites W2055412520 @default.
- W2045987130 cites W2058441759 @default.
- W2045987130 cites W2060703779 @default.
- W2045987130 cites W2070905404 @default.
- W2045987130 cites W2079259321 @default.
- W2045987130 cites W2079305650 @default.
- W2045987130 cites W2079325629 @default.
- W2045987130 cites W2079801505 @default.
- W2045987130 cites W2082100660 @default.
- W2045987130 cites W2082327374 @default.
- W2045987130 cites W2103496339 @default.
- W2045987130 cites W2106693625 @default.
- W2045987130 cites W2132984323 @default.
- W2045987130 cites W2133321814 @default.
- W2045987130 cites W2155482699 @default.
- W2045987130 cites W2169690625 @default.
- W2045987130 cites W2621341898 @default.
- W2045987130 cites W3017323153 @default.
- W2045987130 cites W3018770027 @default.
- W2045987130 doi "https://doi.org/10.1061/(asce)he.1943-5584.0000535" @default.
- W2045987130 hasPublicationYear "2012" @default.
- W2045987130 type Work @default.
- W2045987130 sameAs 2045987130 @default.
- W2045987130 citedByCount "50" @default.
- W2045987130 countsByYear W20459871302012 @default.
- W2045987130 countsByYear W20459871302014 @default.
- W2045987130 countsByYear W20459871302015 @default.
- W2045987130 countsByYear W20459871302016 @default.
- W2045987130 countsByYear W20459871302017 @default.
- W2045987130 countsByYear W20459871302018 @default.
- W2045987130 countsByYear W20459871302019 @default.
- W2045987130 countsByYear W20459871302020 @default.
- W2045987130 countsByYear W20459871302021 @default.
- W2045987130 countsByYear W20459871302022 @default.
- W2045987130 countsByYear W20459871302023 @default.
- W2045987130 crossrefType "journal-article" @default.
- W2045987130 hasAuthorship W2045987130A5016315589 @default.
- W2045987130 hasAuthorship W2045987130A5044658695 @default.
- W2045987130 hasConcept C105795698 @default.
- W2045987130 hasConcept C121332964 @default.
- W2045987130 hasConcept C127313418 @default.
- W2045987130 hasConcept C1276947 @default.
- W2045987130 hasConcept C139945424 @default.
- W2045987130 hasConcept C151730666 @default.
- W2045987130 hasConcept C154945302 @default.
- W2045987130 hasConcept C187320778 @default.
- W2045987130 hasConcept C2816523 @default.
- W2045987130 hasConcept C33923547 @default.
- W2045987130 hasConcept C41008148 @default.
- W2045987130 hasConcept C47432892 @default.
- W2045987130 hasConcept C50644808 @default.
- W2045987130 hasConcept C59656382 @default.
- W2045987130 hasConcept C6980683 @default.
- W2045987130 hasConcept C76886044 @default.
- W2045987130 hasConceptScore W2045987130C105795698 @default.
- W2045987130 hasConceptScore W2045987130C121332964 @default.
- W2045987130 hasConceptScore W2045987130C127313418 @default.
- W2045987130 hasConceptScore W2045987130C1276947 @default.
- W2045987130 hasConceptScore W2045987130C139945424 @default.
- W2045987130 hasConceptScore W2045987130C151730666 @default.
- W2045987130 hasConceptScore W2045987130C154945302 @default.
- W2045987130 hasConceptScore W2045987130C187320778 @default.
- W2045987130 hasConceptScore W2045987130C2816523 @default.