Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051235648> ?p ?o ?g. }
- W2051235648 endingPage "77" @default.
- W2051235648 startingPage "69" @default.
- W2051235648 abstract "This paper presents a mathematical model of coupled heat and mass transfer in multi-layers of loose adsorbent grains under realistic conditions of adsorption heat transformation (AHT) cycle. The model allows a simulation of the adsorption dynamics in the adsorbent layer which consists of a low number of loose adsorbent grains (1 ≤ n ≤ 4). Firstly, the model was validated by comparison with the kinetics of isothermal water adsorption on a single spherical grain, initiated by a small pressure drop, for which an analytical solution is well-known. Afterwards, the model was applied to simulate non-isothermal water dynamics for adsorbent-heat exchanger configurations of one, two and four layers of loose grains of Fuji silica type RD. The grains are located on a metal support subjected to a fast variation of temperature as it takes place during isobaric phases of AHT cycle. The system of partial differential equations was solved by using the COMSOL Multiphysics ® simulation environment. The calculated sorption dynamics is in a good accordance with the experimental data obtained for n = 1, 2 and 4 under the same boundary conditions. Moreover, the model was used to simulate the ad/desorption process for different grain sizes (0.45, 0.85 and 1.7 mm). The input parameters which ensure the best data fitting were compared with those experimentally determined for Fuji silica type RD as well as with the input data of other heat and mass transfer models presented in the literature. The developed model gives a powerful tool for accurate simulation of dynamic features for the AHT units with practically interesting configuration of the adsorber/heat exchanger which utilizes a low number of loose adsorbent grains. Moreover, useful information about radial and axial distributions of the temperature and vapour concentration can be obtained for both gas and solid phases. Finally, the specific cooling power of AHT cycle was estimated and recommendations on the cycle dynamic optimization were made. ► We model non-isothermal water sorption for 1, 2 and 4 layers of silica gel grains. ► Calculated sorption dynamics is in accordance with the experimental data. ► We simulated the ad/desorption process for different grain size. ► A grain size 0.5 mm allows a power density higher than that obtained with 1.5–2 mm." @default.
- W2051235648 created "2016-06-24" @default.
- W2051235648 creator A5013918958 @default.
- W2051235648 creator A5040912741 @default.
- W2051235648 creator A5071954370 @default.
- W2051235648 creator A5087213041 @default.
- W2051235648 date "2012-11-01" @default.
- W2051235648 modified "2023-09-25" @default.
- W2051235648 title "Simulation of water sorption dynamics in adsorption chillers: One, two and four layers of loose silica grains" @default.
- W2051235648 cites W1965059403 @default.
- W2051235648 cites W1965133727 @default.
- W2051235648 cites W1968686688 @default.
- W2051235648 cites W1972823883 @default.
- W2051235648 cites W1987673882 @default.
- W2051235648 cites W1988467327 @default.
- W2051235648 cites W2007187485 @default.
- W2051235648 cites W2008920452 @default.
- W2051235648 cites W2012740381 @default.
- W2051235648 cites W2013797079 @default.
- W2051235648 cites W2025117158 @default.
- W2051235648 cites W2026908093 @default.
- W2051235648 cites W2030602109 @default.
- W2051235648 cites W2030695564 @default.
- W2051235648 cites W2034317938 @default.
- W2051235648 cites W2044548428 @default.
- W2051235648 cites W2051990675 @default.
- W2051235648 cites W2059734643 @default.
- W2051235648 cites W2064249174 @default.
- W2051235648 cites W2068666716 @default.
- W2051235648 cites W2077084211 @default.
- W2051235648 cites W2079359565 @default.
- W2051235648 cites W2085849516 @default.
- W2051235648 cites W2091223456 @default.
- W2051235648 cites W2127012910 @default.
- W2051235648 cites W2148824202 @default.
- W2051235648 cites W4292408570 @default.
- W2051235648 doi "https://doi.org/10.1016/j.applthermaleng.2012.03.038" @default.
- W2051235648 hasPublicationYear "2012" @default.
- W2051235648 type Work @default.
- W2051235648 sameAs 2051235648 @default.
- W2051235648 citedByCount "47" @default.
- W2051235648 countsByYear W20512356482012 @default.
- W2051235648 countsByYear W20512356482013 @default.
- W2051235648 countsByYear W20512356482014 @default.
- W2051235648 countsByYear W20512356482015 @default.
- W2051235648 countsByYear W20512356482016 @default.
- W2051235648 countsByYear W20512356482017 @default.
- W2051235648 countsByYear W20512356482018 @default.
- W2051235648 countsByYear W20512356482019 @default.
- W2051235648 countsByYear W20512356482020 @default.
- W2051235648 countsByYear W20512356482021 @default.
- W2051235648 countsByYear W20512356482022 @default.
- W2051235648 countsByYear W20512356482023 @default.
- W2051235648 crossrefType "journal-article" @default.
- W2051235648 hasAuthorship W2051235648A5013918958 @default.
- W2051235648 hasAuthorship W2051235648A5040912741 @default.
- W2051235648 hasAuthorship W2051235648A5071954370 @default.
- W2051235648 hasAuthorship W2051235648A5087213041 @default.
- W2051235648 hasConcept C107706546 @default.
- W2051235648 hasConcept C121332964 @default.
- W2051235648 hasConcept C133347239 @default.
- W2051235648 hasConcept C135628077 @default.
- W2051235648 hasConcept C146211579 @default.
- W2051235648 hasConcept C150394285 @default.
- W2051235648 hasConcept C159985019 @default.
- W2051235648 hasConcept C162711632 @default.
- W2051235648 hasConcept C178790620 @default.
- W2051235648 hasConcept C185592680 @default.
- W2051235648 hasConcept C192562407 @default.
- W2051235648 hasConcept C2779532046 @default.
- W2051235648 hasConcept C46435376 @default.
- W2051235648 hasConcept C50517652 @default.
- W2051235648 hasConcept C51038369 @default.
- W2051235648 hasConcept C57879066 @default.
- W2051235648 hasConcept C58445606 @default.
- W2051235648 hasConcept C97355855 @default.
- W2051235648 hasConceptScore W2051235648C107706546 @default.
- W2051235648 hasConceptScore W2051235648C121332964 @default.
- W2051235648 hasConceptScore W2051235648C133347239 @default.
- W2051235648 hasConceptScore W2051235648C135628077 @default.
- W2051235648 hasConceptScore W2051235648C146211579 @default.
- W2051235648 hasConceptScore W2051235648C150394285 @default.
- W2051235648 hasConceptScore W2051235648C159985019 @default.
- W2051235648 hasConceptScore W2051235648C162711632 @default.
- W2051235648 hasConceptScore W2051235648C178790620 @default.
- W2051235648 hasConceptScore W2051235648C185592680 @default.
- W2051235648 hasConceptScore W2051235648C192562407 @default.
- W2051235648 hasConceptScore W2051235648C2779532046 @default.
- W2051235648 hasConceptScore W2051235648C46435376 @default.
- W2051235648 hasConceptScore W2051235648C50517652 @default.
- W2051235648 hasConceptScore W2051235648C51038369 @default.
- W2051235648 hasConceptScore W2051235648C57879066 @default.
- W2051235648 hasConceptScore W2051235648C58445606 @default.
- W2051235648 hasConceptScore W2051235648C97355855 @default.
- W2051235648 hasLocation W20512356481 @default.
- W2051235648 hasOpenAccess W2051235648 @default.
- W2051235648 hasPrimaryLocation W20512356481 @default.
- W2051235648 hasRelatedWork W1479913170 @default.