Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079181115> ?p ?o ?g. }
- W2079181115 endingPage "994" @default.
- W2079181115 startingPage "984" @default.
- W2079181115 abstract "Increased availability of multi-platform genomics data on matched samples has sparked research efforts to discover how diverse molecular features interact both within and between platforms. In addition, simultaneous measurements of genetic and epigenetic characteristics illuminate the roles their complex relationships play in disease progression and outcomes. However, integrative methods for diverse genomics data are faced with the challenges of ultra-high dimensionality and the existence of complex interactions both within and between platforms. We propose a novel modeling framework for integrative analysis based on decompositions of the large number of platform-specific features into a smaller number of latent features. Subsequently we build a predictive model for clinical outcomes accounting for both within- and between-platform interactions based on Bayesian model averaging procedures. Principal components, partial least squares and non-negative matrix factorization as well as sparse counterparts of each are used to define the latent features, and the performance of these decompositions is compared both on real and simulated data. The latent feature interactions are shown to preserve interactions between the original features and not only aid prediction but also allow explicit selection of outcome-related features. The methods are motivated by and applied to a glioblastoma multiforme data set from The Cancer Genome Atlas to predict patient survival times integrating gene expression, microRNA, copy number and methylation data. For the glioblastoma data, we find a high concordance between our selected prognostic genes and genes with known associations with glioblastoma. In addition, our model discovers several relevant cross-platform interactions such as copy number variation associated gene dosing and epigenetic regulation through promoter methylation. On simulated data, we show that our proposed method successfully incorporates interactions within and between genomic platforms to aid accurate prediction and variable selection. Our methods perform best when principal components are used to define the latent features." @default.
- W2079181115 created "2016-06-24" @default.
- W2079181115 creator A5005172808 @default.
- W2079181115 creator A5024470416 @default.
- W2079181115 creator A5052788624 @default.
- W2079181115 creator A5066837969 @default.
- W2079181115 date "2014-11-01" @default.
- W2079181115 modified "2023-09-24" @default.
- W2079181115 title "Latent Feature Decompositions for Integrative Analysis of Multi-Platform Genomic Data" @default.
- W2079181115 cites W1504303645 @default.
- W2079181115 cites W1967778641 @default.
- W2079181115 cites W1977932018 @default.
- W2079181115 cites W1978034558 @default.
- W2079181115 cites W1984807040 @default.
- W2079181115 cites W2008929650 @default.
- W2079181115 cites W2011047838 @default.
- W2079181115 cites W2014606320 @default.
- W2079181115 cites W2026920664 @default.
- W2079181115 cites W2044296075 @default.
- W2079181115 cites W2085070983 @default.
- W2079181115 cites W2097057782 @default.
- W2079181115 cites W2098290597 @default.
- W2079181115 cites W2109937264 @default.
- W2079181115 cites W2128040385 @default.
- W2079181115 cites W2136340483 @default.
- W2079181115 cites W2136787567 @default.
- W2079181115 cites W2151335185 @default.
- W2079181115 cites W2151439322 @default.
- W2079181115 cites W2162942021 @default.
- W2079181115 cites W2165685007 @default.
- W2079181115 cites W2169385429 @default.
- W2079181115 cites W2170917242 @default.
- W2079181115 cites W2171304795 @default.
- W2079181115 doi "https://doi.org/10.1109/tcbb.2014.2325035" @default.
- W2079181115 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4486317" @default.
- W2079181115 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26146492" @default.
- W2079181115 hasPublicationYear "2014" @default.
- W2079181115 type Work @default.
- W2079181115 sameAs 2079181115 @default.
- W2079181115 citedByCount "9" @default.
- W2079181115 countsByYear W20791811152014 @default.
- W2079181115 countsByYear W20791811152015 @default.
- W2079181115 countsByYear W20791811152016 @default.
- W2079181115 countsByYear W20791811152017 @default.
- W2079181115 countsByYear W20791811152019 @default.
- W2079181115 countsByYear W20791811152020 @default.
- W2079181115 crossrefType "journal-article" @default.
- W2079181115 hasAuthorship W2079181115A5005172808 @default.
- W2079181115 hasAuthorship W2079181115A5024470416 @default.
- W2079181115 hasAuthorship W2079181115A5052788624 @default.
- W2079181115 hasAuthorship W2079181115A5066837969 @default.
- W2079181115 hasBestOaLocation W20791811152 @default.
- W2079181115 hasConcept C104317684 @default.
- W2079181115 hasConcept C119857082 @default.
- W2079181115 hasConcept C124101348 @default.
- W2079181115 hasConcept C138885662 @default.
- W2079181115 hasConcept C141231307 @default.
- W2079181115 hasConcept C148483581 @default.
- W2079181115 hasConcept C154945302 @default.
- W2079181115 hasConcept C177264268 @default.
- W2079181115 hasConcept C189206191 @default.
- W2079181115 hasConcept C199360897 @default.
- W2079181115 hasConcept C2776401178 @default.
- W2079181115 hasConcept C41008148 @default.
- W2079181115 hasConcept C41895202 @default.
- W2079181115 hasConcept C54355233 @default.
- W2079181115 hasConcept C58489278 @default.
- W2079181115 hasConcept C70721500 @default.
- W2079181115 hasConcept C86803240 @default.
- W2079181115 hasConceptScore W2079181115C104317684 @default.
- W2079181115 hasConceptScore W2079181115C119857082 @default.
- W2079181115 hasConceptScore W2079181115C124101348 @default.
- W2079181115 hasConceptScore W2079181115C138885662 @default.
- W2079181115 hasConceptScore W2079181115C141231307 @default.
- W2079181115 hasConceptScore W2079181115C148483581 @default.
- W2079181115 hasConceptScore W2079181115C154945302 @default.
- W2079181115 hasConceptScore W2079181115C177264268 @default.
- W2079181115 hasConceptScore W2079181115C189206191 @default.
- W2079181115 hasConceptScore W2079181115C199360897 @default.
- W2079181115 hasConceptScore W2079181115C2776401178 @default.
- W2079181115 hasConceptScore W2079181115C41008148 @default.
- W2079181115 hasConceptScore W2079181115C41895202 @default.
- W2079181115 hasConceptScore W2079181115C54355233 @default.
- W2079181115 hasConceptScore W2079181115C58489278 @default.
- W2079181115 hasConceptScore W2079181115C70721500 @default.
- W2079181115 hasConceptScore W2079181115C86803240 @default.
- W2079181115 hasIssue "6" @default.
- W2079181115 hasLocation W20791811151 @default.
- W2079181115 hasLocation W20791811152 @default.
- W2079181115 hasLocation W20791811153 @default.
- W2079181115 hasLocation W20791811154 @default.
- W2079181115 hasOpenAccess W2079181115 @default.
- W2079181115 hasPrimaryLocation W20791811151 @default.
- W2079181115 hasRelatedWork W1509848276 @default.
- W2079181115 hasRelatedWork W1607317395 @default.
- W2079181115 hasRelatedWork W19658682 @default.
- W2079181115 hasRelatedWork W1976698416 @default.
- W2079181115 hasRelatedWork W1994307360 @default.