Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080493956> ?p ?o ?g. }
- W2080493956 endingPage "2028" @default.
- W2080493956 startingPage "2020" @default.
- W2080493956 abstract "Abstract Motivation: Cellular networks usually consist of numerous chemical species, such as DNA, RNA, proteins and small molecules, etc. Different biological tasks are generally performed by complex interactions of these species. As these interactions can rarely be directly measured, it is widely recognized that causal relationship identification is essential in understanding biological behaviors of a cellular network. Challenging issues here include not only the large number of interactions to be estimated, but also many restrictions on probing signals. The purposes of this study are to incorporate power law in cellular network identification, in order to increase accuracy of causal regulation estimations, especially to reduce false positive errors. Results: Two identification algorithms are developed that can be efficiently applied to causal regulation identification of a large-scale network from noisy steady-state experiment data. A distinguished feature of these algorithms is that power law has been explicitly incorporated into estimations, which is one important structural property that most large-scale cellular networks approximately have. Under the condition that parameters of the power law are known and measurement errors are Gaussian, a likelihood maximization approach is adopted. The developed estimation algorithms consist of three major steps. At first, angle minimization between subspaces is utilized to identify chemical elements that have direct influences on a prescribed chemical element, under the condition that the number of direct regulations is known. Second, interference coefficients from prescribed chemical elements are estimated through likelihood maximization with respect to measurement errors. Finally, direct regulation numbers are identified through maximizing a lower bound of an overall likelihood function. These methods have been applied to an artificially constructed linear system with 100 elements, a mitogen-activated protein kinase pathway model with 103 chemical elements, some DREAM initiative in silico data and some in vivo data. Compared with the widely adopted total least squares (TLS) method, computation results show that parametric estimation accuracy can be significantly increased and false positive errors can be greatly reduced. Availability: The Matlab files for the methods are available at http://bioinfo.au.tsinghua.edu.cn/member/ylwang/Matlabfiles_CNI.zip Contact: tzhou@mail.tsinghua.edu.cn Supplementary Information: Supplementary data are available at Bioinformatics online." @default.
- W2080493956 created "2016-06-24" @default.
- W2080493956 creator A5012152127 @default.
- W2080493956 creator A5089349928 @default.
- W2080493956 date "2010-06-16" @default.
- W2080493956 modified "2023-09-27" @default.
- W2080493956 title "Causal relationship inference for a large-scale cellular network" @default.
- W2080493956 cites W2001431571 @default.
- W2080493956 cites W2007471837 @default.
- W2080493956 cites W2075161553 @default.
- W2080493956 cites W2076372398 @default.
- W2080493956 cites W2099380913 @default.
- W2080493956 cites W2103342213 @default.
- W2080493956 cites W2106927126 @default.
- W2080493956 cites W2122342005 @default.
- W2080493956 cites W2139439234 @default.
- W2080493956 cites W2142107342 @default.
- W2080493956 cites W2143076232 @default.
- W2080493956 cites W2147755534 @default.
- W2080493956 cites W2160533336 @default.
- W2080493956 cites W2163141979 @default.
- W2080493956 cites W2163480486 @default.
- W2080493956 cites W3103362336 @default.
- W2080493956 cites W4206428854 @default.
- W2080493956 doi "https://doi.org/10.1093/bioinformatics/btq325" @default.
- W2080493956 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20554691" @default.
- W2080493956 hasPublicationYear "2010" @default.
- W2080493956 type Work @default.
- W2080493956 sameAs 2080493956 @default.
- W2080493956 citedByCount "18" @default.
- W2080493956 countsByYear W20804939562012 @default.
- W2080493956 countsByYear W20804939562013 @default.
- W2080493956 countsByYear W20804939562014 @default.
- W2080493956 countsByYear W20804939562015 @default.
- W2080493956 countsByYear W20804939562016 @default.
- W2080493956 countsByYear W20804939562017 @default.
- W2080493956 crossrefType "journal-article" @default.
- W2080493956 hasAuthorship W2080493956A5012152127 @default.
- W2080493956 hasAuthorship W2080493956A5089349928 @default.
- W2080493956 hasBestOaLocation W20804939561 @default.
- W2080493956 hasConcept C105795698 @default.
- W2080493956 hasConcept C111472728 @default.
- W2080493956 hasConcept C11413529 @default.
- W2080493956 hasConcept C114614502 @default.
- W2080493956 hasConcept C116834253 @default.
- W2080493956 hasConcept C121332964 @default.
- W2080493956 hasConcept C124101348 @default.
- W2080493956 hasConcept C126255220 @default.
- W2080493956 hasConcept C138885662 @default.
- W2080493956 hasConcept C149782125 @default.
- W2080493956 hasConcept C154945302 @default.
- W2080493956 hasConcept C158600405 @default.
- W2080493956 hasConcept C163716315 @default.
- W2080493956 hasConcept C182081679 @default.
- W2080493956 hasConcept C189950617 @default.
- W2080493956 hasConcept C2776214188 @default.
- W2080493956 hasConcept C2776330181 @default.
- W2080493956 hasConcept C2778755073 @default.
- W2080493956 hasConcept C28225019 @default.
- W2080493956 hasConcept C33923547 @default.
- W2080493956 hasConcept C41008148 @default.
- W2080493956 hasConcept C49781872 @default.
- W2080493956 hasConcept C59822182 @default.
- W2080493956 hasConcept C62520636 @default.
- W2080493956 hasConcept C86803240 @default.
- W2080493956 hasConceptScore W2080493956C105795698 @default.
- W2080493956 hasConceptScore W2080493956C111472728 @default.
- W2080493956 hasConceptScore W2080493956C11413529 @default.
- W2080493956 hasConceptScore W2080493956C114614502 @default.
- W2080493956 hasConceptScore W2080493956C116834253 @default.
- W2080493956 hasConceptScore W2080493956C121332964 @default.
- W2080493956 hasConceptScore W2080493956C124101348 @default.
- W2080493956 hasConceptScore W2080493956C126255220 @default.
- W2080493956 hasConceptScore W2080493956C138885662 @default.
- W2080493956 hasConceptScore W2080493956C149782125 @default.
- W2080493956 hasConceptScore W2080493956C154945302 @default.
- W2080493956 hasConceptScore W2080493956C158600405 @default.
- W2080493956 hasConceptScore W2080493956C163716315 @default.
- W2080493956 hasConceptScore W2080493956C182081679 @default.
- W2080493956 hasConceptScore W2080493956C189950617 @default.
- W2080493956 hasConceptScore W2080493956C2776214188 @default.
- W2080493956 hasConceptScore W2080493956C2776330181 @default.
- W2080493956 hasConceptScore W2080493956C2778755073 @default.
- W2080493956 hasConceptScore W2080493956C28225019 @default.
- W2080493956 hasConceptScore W2080493956C33923547 @default.
- W2080493956 hasConceptScore W2080493956C41008148 @default.
- W2080493956 hasConceptScore W2080493956C49781872 @default.
- W2080493956 hasConceptScore W2080493956C59822182 @default.
- W2080493956 hasConceptScore W2080493956C62520636 @default.
- W2080493956 hasConceptScore W2080493956C86803240 @default.
- W2080493956 hasIssue "16" @default.
- W2080493956 hasLocation W20804939561 @default.
- W2080493956 hasLocation W20804939562 @default.
- W2080493956 hasOpenAccess W2080493956 @default.
- W2080493956 hasPrimaryLocation W20804939561 @default.
- W2080493956 hasRelatedWork W1517130378 @default.
- W2080493956 hasRelatedWork W1641367416 @default.
- W2080493956 hasRelatedWork W2012166397 @default.