Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083804579> ?p ?o ?g. }
- W2083804579 endingPage "152" @default.
- W2083804579 startingPage "144" @default.
- W2083804579 abstract "Laboratory mesocosm incubations were undertaken to investigate the influence of natural densities of the thalassinidean shrimp, Trypaea australiensis (marine yabby) on sediment oxygen demand (SOD), inorganic nutrient fluxes, and the N-cycle processes of nitrification, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Mesocosms (~ 0.1 m2 × 55 cm deep) of sieved, natural T. australiensis inhabited sands were continually flushed with fresh seawater and pre-incubated for two weeks prior to being assigned to one of three treatments; control (no additions), low yabby density (40 T. australiensis m− 2) or high yabby density (80 T. australiensis m− 2). Thereafter, SOD and sediment–water column inorganic nutrient fluxes were determined periodically over a 38 day period. On the final day rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were also determined using the 15N-isotope pairing technique. Yabbies consistently and significantly (p < 0.001) stimulated SOD over the entire 38 day incubation period (mean values: 4.92, 9.21 and 14.9 mmol m− 2 day− 1 for control, low and high density treatments, respectively). The increased organic matter mineralisation rates greatly enhanced nitrogen regeneration rates in the sediment and fuelled significantly higher effluxes of dissolved inorganic nitrogen with NH4+ and total DIN effluxes in the low and high density treatments respectively, being 617 and 1534%, and 269 and 565% higher than those in the controls, despite sediment bioavailable (porewater + exchangeable) NH4+ pools being approximately 2 and 4-fold lower in the low and high density yabby treatment sediments compared to the controls, measured at the end of the 37 day experiment. Mass balance calculations based on the final day nutrient flux and nitrate reduction rate data demonstrated that yabbies stimulated benthic nitrification rates by 31 and 46% in the low and high density treatments. However, somewhat surprisingly T. australiensis population density had no effect on rates of denitrification and DNRA despite the higher rates of nitrification and higher equilibrium water column nitrate concentration. Indeed, nitrate reduction processes became an increasingly unimportant element with increasing yabby density with for example, N2 generated by coupled nitrification–denitrification representing 11.5, 5.2 and 2.8% of the total inorganic-N recycled to the water column in the control, low density and high density yabby treatments, respectively. Overall, the major influence of T. australiensis in the studied low organic matter content, sandy sediments was to enhance coupling between the benthic and pelagic systems through increased rates of inorganic nitrogen regeneration in the sediment and enhanced export of this nitrogen to the water column. Our results also suggest that the influences of organisms such as T. australiensis which form deep, extensive and complex burrow systems where irrigation rates differ greatly between different burrow sections, may be more complex than those recorded for infauna which form simple U-shaped burrows. Additionally, there may be a strong interaction between faunal effects and the sediment physical and biological environment and thus the same species may have contrasting influences in different sediment types." @default.
- W2083804579 created "2016-06-24" @default.
- W2083804579 creator A5022765247 @default.
- W2083804579 creator A5023743757 @default.
- W2083804579 creator A5027505933 @default.
- W2083804579 creator A5084078803 @default.
- W2083804579 date "2009-02-01" @default.
- W2083804579 modified "2023-10-16" @default.
- W2083804579 title "Influence of Trypaea australiensis population density on benthic metabolism and nitrogen dynamics in sandy estuarine sediment: A mesocosm simulation" @default.
- W2083804579 cites W1569952385 @default.
- W2083804579 cites W1831771220 @default.
- W2083804579 cites W1967311607 @default.
- W2083804579 cites W1969552454 @default.
- W2083804579 cites W1969595701 @default.
- W2083804579 cites W1972280216 @default.
- W2083804579 cites W1972346506 @default.
- W2083804579 cites W1980720682 @default.
- W2083804579 cites W1984506656 @default.
- W2083804579 cites W1986673547 @default.
- W2083804579 cites W1993253297 @default.
- W2083804579 cites W2003926236 @default.
- W2083804579 cites W2004456027 @default.
- W2083804579 cites W2004671631 @default.
- W2083804579 cites W2006965937 @default.
- W2083804579 cites W2008189643 @default.
- W2083804579 cites W2016270452 @default.
- W2083804579 cites W2019057231 @default.
- W2083804579 cites W2019166239 @default.
- W2083804579 cites W2021087120 @default.
- W2083804579 cites W2025619645 @default.
- W2083804579 cites W2030867736 @default.
- W2083804579 cites W2033563737 @default.
- W2083804579 cites W2034160165 @default.
- W2083804579 cites W2035518975 @default.
- W2083804579 cites W2037551189 @default.
- W2083804579 cites W2041576552 @default.
- W2083804579 cites W2049602267 @default.
- W2083804579 cites W2057347523 @default.
- W2083804579 cites W2057348534 @default.
- W2083804579 cites W2062466455 @default.
- W2083804579 cites W2076841169 @default.
- W2083804579 cites W2085192177 @default.
- W2083804579 cites W2087076153 @default.
- W2083804579 cites W2101059494 @default.
- W2083804579 cites W2102942560 @default.
- W2083804579 cites W2108399444 @default.
- W2083804579 cites W2129113124 @default.
- W2083804579 cites W2129820520 @default.
- W2083804579 cites W2132518521 @default.
- W2083804579 cites W2134776059 @default.
- W2083804579 cites W2137624979 @default.
- W2083804579 cites W2144134336 @default.
- W2083804579 cites W2158016851 @default.
- W2083804579 cites W2166388109 @default.
- W2083804579 cites W2166395264 @default.
- W2083804579 cites W2169597810 @default.
- W2083804579 cites W2284571655 @default.
- W2083804579 cites W2300259269 @default.
- W2083804579 doi "https://doi.org/10.1016/j.seares.2008.11.003" @default.
- W2083804579 hasPublicationYear "2009" @default.
- W2083804579 type Work @default.
- W2083804579 sameAs 2083804579 @default.
- W2083804579 citedByCount "31" @default.
- W2083804579 countsByYear W20838045792012 @default.
- W2083804579 countsByYear W20838045792013 @default.
- W2083804579 countsByYear W20838045792015 @default.
- W2083804579 countsByYear W20838045792016 @default.
- W2083804579 countsByYear W20838045792018 @default.
- W2083804579 countsByYear W20838045792019 @default.
- W2083804579 countsByYear W20838045792021 @default.
- W2083804579 countsByYear W20838045792022 @default.
- W2083804579 countsByYear W20838045792023 @default.
- W2083804579 crossrefType "journal-article" @default.
- W2083804579 hasAuthorship W2083804579A5022765247 @default.
- W2083804579 hasAuthorship W2083804579A5023743757 @default.
- W2083804579 hasAuthorship W2083804579A5027505933 @default.
- W2083804579 hasAuthorship W2083804579A5084078803 @default.
- W2083804579 hasConcept C107872376 @default.
- W2083804579 hasConcept C122846477 @default.
- W2083804579 hasConcept C142796444 @default.
- W2083804579 hasConcept C151730666 @default.
- W2083804579 hasConcept C164752452 @default.
- W2083804579 hasConcept C178790620 @default.
- W2083804579 hasConcept C180553826 @default.
- W2083804579 hasConcept C185592680 @default.
- W2083804579 hasConcept C18903297 @default.
- W2083804579 hasConcept C2776384668 @default.
- W2083804579 hasConcept C2779870022 @default.
- W2083804579 hasConcept C2816523 @default.
- W2083804579 hasConcept C48743137 @default.
- W2083804579 hasConcept C49045045 @default.
- W2083804579 hasConcept C537208039 @default.
- W2083804579 hasConcept C73593433 @default.
- W2083804579 hasConcept C86803240 @default.
- W2083804579 hasConceptScore W2083804579C107872376 @default.
- W2083804579 hasConceptScore W2083804579C122846477 @default.
- W2083804579 hasConceptScore W2083804579C142796444 @default.
- W2083804579 hasConceptScore W2083804579C151730666 @default.