Matches in SemOpenAlex for { <https://semopenalex.org/work/W2093602450> ?p ?o ?g. }
- W2093602450 endingPage "412" @default.
- W2093602450 startingPage "398" @default.
- W2093602450 abstract "Mild cognitive impairment (MCI) is a transitional stage between age-related cognitive decline and Alzheimer's disease (AD). For the effective treatment of AD, it would be important to identify MCI patients at high risk for conversion to AD. In this study, we present a novel magnetic resonance imaging (MRI)-based method for predicting the MCI-to-AD conversion from one to three years before the clinical diagnosis. First, we developed a novel MRI biomarker of MCI-to-AD conversion using semi-supervised learning and then integrated it with age and cognitive measures about the subjects using a supervised learning algorithm resulting in what we call the aggregate biomarker. The novel characteristics of the methods for learning the biomarkers are as follows: 1) We used a semi-supervised learning method (low density separation) for the construction of MRI biomarker as opposed to more typical supervised methods; 2) We performed a feature selection on MRI data from AD subjects and normal controls without using data from MCI subjects via regularized logistic regression; 3) We removed the aging effects from the MRI data before the classifier training to prevent possible confounding between AD and age related atrophies; and 4) We constructed the aggregate biomarker by first learning a separate MRI biomarker and then combining it with age and cognitive measures about the MCI subjects at the baseline by applying a random forest classifier. We experimentally demonstrated the added value of these novel characteristics in predicting the MCI-to-AD conversion on data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. With the ADNI data, the MRI biomarker achieved a 10-fold cross-validated area under the receiver operating characteristic curve (AUC) of 0.7661 in discriminating progressive MCI patients (pMCI) from stable MCI patients (sMCI). Our aggregate biomarker based on MRI data together with baseline cognitive measurements and age achieved a 10-fold cross-validated AUC score of 0.9020 in discriminating pMCI from sMCI. The results presented in this study demonstrate the potential of the suggested approach for early AD diagnosis and an important role of MRI in the MCI-to-AD conversion prediction. However, it is evident based on our results that combining MRI data with cognitive test results improved the accuracy of the MCI-to-AD conversion prediction." @default.
- W2093602450 created "2016-06-24" @default.
- W2093602450 creator A5021572716 @default.
- W2093602450 creator A5042399760 @default.
- W2093602450 creator A5063620779 @default.
- W2093602450 creator A5070530631 @default.
- W2093602450 creator A5085380763 @default.
- W2093602450 date "2015-01-01" @default.
- W2093602450 modified "2023-10-18" @default.
- W2093602450 title "Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects" @default.
- W2093602450 cites W113475142 @default.
- W2093602450 cites W1495649094 @default.
- W2093602450 cites W1554171816 @default.
- W2093602450 cites W155481447 @default.
- W2093602450 cites W1777627386 @default.
- W2093602450 cites W1967737804 @default.
- W2093602450 cites W1972982304 @default.
- W2093602450 cites W1980872192 @default.
- W2093602450 cites W1981697962 @default.
- W2093602450 cites W1982145113 @default.
- W2093602450 cites W1990093101 @default.
- W2093602450 cites W1990689754 @default.
- W2093602450 cites W1992054897 @default.
- W2093602450 cites W1992395739 @default.
- W2093602450 cites W1995277044 @default.
- W2093602450 cites W2001648635 @default.
- W2093602450 cites W2009110843 @default.
- W2093602450 cites W2014418634 @default.
- W2093602450 cites W2022696841 @default.
- W2093602450 cites W2025693096 @default.
- W2093602450 cites W2028580299 @default.
- W2093602450 cites W2039018899 @default.
- W2093602450 cites W2042116371 @default.
- W2093602450 cites W2045185094 @default.
- W2093602450 cites W2045892248 @default.
- W2093602450 cites W2053599215 @default.
- W2093602450 cites W2053836765 @default.
- W2093602450 cites W2055925643 @default.
- W2093602450 cites W2059658584 @default.
- W2093602450 cites W2065535274 @default.
- W2093602450 cites W2073663987 @default.
- W2093602450 cites W2077822545 @default.
- W2093602450 cites W2078551663 @default.
- W2093602450 cites W2079016638 @default.
- W2093602450 cites W2079484785 @default.
- W2093602450 cites W2088309143 @default.
- W2093602450 cites W2093311386 @default.
- W2093602450 cites W2093488421 @default.
- W2093602450 cites W2096963202 @default.
- W2093602450 cites W2097360283 @default.
- W2093602450 cites W2102508963 @default.
- W2093602450 cites W2105947467 @default.
- W2093602450 cites W2107229253 @default.
- W2093602450 cites W2107564884 @default.
- W2093602450 cites W2107956883 @default.
- W2093602450 cites W2108103428 @default.
- W2093602450 cites W2111913931 @default.
- W2093602450 cites W2113127248 @default.
- W2093602450 cites W2115543656 @default.
- W2093602450 cites W2118286367 @default.
- W2093602450 cites W2119406369 @default.
- W2093602450 cites W2123225824 @default.
- W2093602450 cites W2128251808 @default.
- W2093602450 cites W2136520115 @default.
- W2093602450 cites W2146089088 @default.
- W2093602450 cites W2148260481 @default.
- W2093602450 cites W2149726258 @default.
- W2093602450 cites W2153171432 @default.
- W2093602450 cites W2153480371 @default.
- W2093602450 cites W2155164847 @default.
- W2093602450 cites W2155653793 @default.
- W2093602450 cites W2156087784 @default.
- W2093602450 cites W2159965356 @default.
- W2093602450 cites W2160034813 @default.
- W2093602450 cites W2171380313 @default.
- W2093602450 cites W2171781860 @default.
- W2093602450 cites W2911964244 @default.
- W2093602450 cites W4230920194 @default.
- W2093602450 cites W4249565903 @default.
- W2093602450 cites W4294541781 @default.
- W2093602450 doi "https://doi.org/10.1016/j.neuroimage.2014.10.002" @default.
- W2093602450 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5957071" @default.
- W2093602450 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25312773" @default.
- W2093602450 hasPublicationYear "2015" @default.
- W2093602450 type Work @default.
- W2093602450 sameAs 2093602450 @default.
- W2093602450 citedByCount "503" @default.
- W2093602450 countsByYear W20936024502012 @default.
- W2093602450 countsByYear W20936024502015 @default.
- W2093602450 countsByYear W20936024502016 @default.
- W2093602450 countsByYear W20936024502017 @default.
- W2093602450 countsByYear W20936024502018 @default.
- W2093602450 countsByYear W20936024502019 @default.
- W2093602450 countsByYear W20936024502020 @default.
- W2093602450 countsByYear W20936024502021 @default.
- W2093602450 countsByYear W20936024502022 @default.
- W2093602450 countsByYear W20936024502023 @default.
- W2093602450 crossrefType "journal-article" @default.