Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097637974> ?p ?o ?g. }
- W2097637974 endingPage "76" @default.
- W2097637974 startingPage "71" @default.
- W2097637974 abstract "Increasing evidence indicates that numerous genetic pathways responding to environmental stress in animals are regulated co-ordinately as well as independently. These stress-response systems should therefore be viewed in holistic terms as a network. As such, their behaviour is susceptible to mathematical modelling using a systems biology approach. This review outlines relevant evidence and describes a newly launched project to develop just such a model using stress- response data from multiple transgenic strains of C. elegans and D. melanogaster. We hope that our eventual model will be capable of predicting the effects of simple stressor mixtures with reasonable accuracy. To maximise the effectiveness and scope of this model, we appeal for help from colleagues to share reagents and data relevant to this project. We also present preliminary data where RNA interference has implicated the key transcription factor DAF-16 in an unexpected up- regulation of cyp-34A9 reporter expression by high cadmium. 1. STRESS RESPONSES AND MIXTURE TOXICITY In multicellular organisms, the defensive cellular re- sponses evoked by environmental stresses do not result from simple linear pathways, but rather from a network of inter- linked pathways with multiple outputs. This makes it diffi- cult to predict the biological effects of multiple stressors acting together, even though this is the normal situation for industrial pollution of soil or water, where several different contaminants are usually present together. There are few studies and no useful predictive models describing the mo- lecular responses of multicellular organisms to several toxi- cants acting in concert. This is essentially a systems biology problem, requiring integration of complex molecular and toxicological information. Under the auspices of a Major Award from the UK-India Education and Research Initiative (UK-IERI), we intend to develop an in silico model describ- ing the principal elements of a consensus stress response network (SRN) and its in vivo responses to single stressors, using data from two invertebrate model systems, the nema- tode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. This model will be used to predict the likely SRN responses to stressor mixtures, and such predictions will then be tested experimentally in both species so that the model can be refined accordingly. Since the SRN core path- ways are highly conserved among animal taxa, general fea- tures of this model should find wider application in ecotoxi-" @default.
- W2097637974 created "2016-06-24" @default.
- W2097637974 creator A5010038899 @default.
- W2097637974 creator A5016629898 @default.
- W2097637974 creator A5017774594 @default.
- W2097637974 creator A5048839466 @default.
- W2097637974 creator A5050955198 @default.
- W2097637974 creator A5055953133 @default.
- W2097637974 creator A5062124427 @default.
- W2097637974 creator A5062386774 @default.
- W2097637974 creator A5074200729 @default.
- W2097637974 creator A5079851095 @default.
- W2097637974 date "2009-01-02" @default.
- W2097637974 modified "2023-10-18" @default.
- W2097637974 title "The Stress-Response Network in Animals: Proposals to Develop a Predictive Mathematical Model" @default.
- W2097637974 cites W1174680330 @default.
- W2097637974 cites W1965522082 @default.
- W2097637974 cites W1965893904 @default.
- W2097637974 cites W1966517214 @default.
- W2097637974 cites W1966612821 @default.
- W2097637974 cites W1968852464 @default.
- W2097637974 cites W1977370347 @default.
- W2097637974 cites W1982278585 @default.
- W2097637974 cites W1983467279 @default.
- W2097637974 cites W1984885117 @default.
- W2097637974 cites W1985094383 @default.
- W2097637974 cites W2000646355 @default.
- W2097637974 cites W2004117621 @default.
- W2097637974 cites W2016235840 @default.
- W2097637974 cites W2016839209 @default.
- W2097637974 cites W2017575645 @default.
- W2097637974 cites W2021874236 @default.
- W2097637974 cites W2023365366 @default.
- W2097637974 cites W2023431124 @default.
- W2097637974 cites W2025338834 @default.
- W2097637974 cites W2030119362 @default.
- W2097637974 cites W2038492783 @default.
- W2097637974 cites W2041420418 @default.
- W2097637974 cites W2041588765 @default.
- W2097637974 cites W2049234431 @default.
- W2097637974 cites W2057450016 @default.
- W2097637974 cites W2057923423 @default.
- W2097637974 cites W2059153579 @default.
- W2097637974 cites W2059524588 @default.
- W2097637974 cites W2075604280 @default.
- W2097637974 cites W2085260316 @default.
- W2097637974 cites W2085562680 @default.
- W2097637974 cites W2090415636 @default.
- W2097637974 cites W2092742937 @default.
- W2097637974 cites W2098567793 @default.
- W2097637974 cites W2112274843 @default.
- W2097637974 cites W2120037909 @default.
- W2097637974 cites W2122548751 @default.
- W2097637974 cites W2134809769 @default.
- W2097637974 cites W2136545880 @default.
- W2097637974 cites W2137683543 @default.
- W2097637974 cites W2142890842 @default.
- W2097637974 cites W2143251729 @default.
- W2097637974 cites W2143286856 @default.
- W2097637974 cites W2148242921 @default.
- W2097637974 cites W2148944713 @default.
- W2097637974 cites W2157523980 @default.
- W2097637974 cites W2161616829 @default.
- W2097637974 cites W2163601036 @default.
- W2097637974 cites W2166146113 @default.
- W2097637974 cites W52779670 @default.
- W2097637974 cites W2145997737 @default.
- W2097637974 doi "https://doi.org/10.2174/1874340400802010071" @default.
- W2097637974 hasPublicationYear "2009" @default.
- W2097637974 type Work @default.
- W2097637974 sameAs 2097637974 @default.
- W2097637974 citedByCount "12" @default.
- W2097637974 countsByYear W20976379742014 @default.
- W2097637974 countsByYear W20976379742015 @default.
- W2097637974 countsByYear W20976379742016 @default.
- W2097637974 countsByYear W20976379742017 @default.
- W2097637974 countsByYear W20976379742020 @default.
- W2097637974 countsByYear W20976379742022 @default.
- W2097637974 crossrefType "journal-article" @default.
- W2097637974 hasAuthorship W2097637974A5010038899 @default.
- W2097637974 hasAuthorship W2097637974A5016629898 @default.
- W2097637974 hasAuthorship W2097637974A5017774594 @default.
- W2097637974 hasAuthorship W2097637974A5048839466 @default.
- W2097637974 hasAuthorship W2097637974A5050955198 @default.
- W2097637974 hasAuthorship W2097637974A5055953133 @default.
- W2097637974 hasAuthorship W2097637974A5062124427 @default.
- W2097637974 hasAuthorship W2097637974A5062386774 @default.
- W2097637974 hasAuthorship W2097637974A5074200729 @default.
- W2097637974 hasAuthorship W2097637974A5079851095 @default.
- W2097637974 hasBestOaLocation W20976379741 @default.
- W2097637974 hasConcept C138885662 @default.
- W2097637974 hasConcept C21036866 @default.
- W2097637974 hasConcept C41008148 @default.
- W2097637974 hasConcept C41895202 @default.
- W2097637974 hasConceptScore W2097637974C138885662 @default.
- W2097637974 hasConceptScore W2097637974C21036866 @default.
- W2097637974 hasConceptScore W2097637974C41008148 @default.
- W2097637974 hasConceptScore W2097637974C41895202 @default.