Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100055302> ?p ?o ?g. }
- W2100055302 endingPage "2781" @default.
- W2100055302 startingPage "2759" @default.
- W2100055302 abstract "Abstract Reconstructing the spatial pattern of a climate field through time from a dataset of overlapping instrumental and climate proxy time series is a nontrivial statistical problem. The need to transform the proxy observations into estimates of the climate field, and the fact that the observed time series are not uniformly distributed in space, further complicate the analysis. Current leading approaches to this problem are based on estimating the full covariance matrix between the proxy time series and instrumental time series over a “calibration” interval and then using this covariance matrix in the context of a linear regression to predict the missing instrumental values from the proxy observations for years prior to instrumental coverage. A fundamentally different approach to this problem is formulated by specifying parametric forms for the spatial covariance and temporal evolution of the climate field, as well as “observation equations” describing the relationship between the data types and the corresponding true values of the climate field. A hierarchical Bayesian model is used to assimilate both proxy and instrumental datasets and to estimate the probability distribution of all model parameters and the climate field through time on a regular spatial grid. The output from this approach includes an estimate of the full covariance structure of the climate field and model parameters as well as diagnostics that estimate the utility of the different proxy time series. This methodology is demonstrated using an instrumental surface temperature dataset after corrupting a number of the time series to mimic proxy observations. The results are compared to those achieved using the regularized expectation–maximization algorithm, and in these experiments the Bayesian algorithm produces reconstructions with greater skill. The assumptions underlying these two methodologies and the results of applying each to simple surrogate datasets are explored in greater detail in Part II." @default.
- W2100055302 created "2016-06-24" @default.
- W2100055302 creator A5035874769 @default.
- W2100055302 creator A5052026565 @default.
- W2100055302 date "2010-05-15" @default.
- W2100055302 modified "2023-10-18" @default.
- W2100055302 title "A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part I: Development and Applications to Paleoclimate Reconstruction Problems" @default.
- W2100055302 cites W1660201747 @default.
- W2100055302 cites W1966499954 @default.
- W2100055302 cites W1979440117 @default.
- W2100055302 cites W1994800218 @default.
- W2100055302 cites W2003326514 @default.
- W2100055302 cites W2005409799 @default.
- W2100055302 cites W2020485766 @default.
- W2100055302 cites W2042859974 @default.
- W2100055302 cites W2043831111 @default.
- W2100055302 cites W2056557542 @default.
- W2100055302 cites W2066850544 @default.
- W2100055302 cites W2067409327 @default.
- W2100055302 cites W2070257026 @default.
- W2100055302 cites W2074767856 @default.
- W2100055302 cites W2077617098 @default.
- W2100055302 cites W2096654418 @default.
- W2100055302 cites W2105934661 @default.
- W2100055302 cites W2123564268 @default.
- W2100055302 cites W2126919392 @default.
- W2100055302 cites W2137101078 @default.
- W2100055302 cites W2142127434 @default.
- W2100055302 cites W2150259853 @default.
- W2100055302 cites W2151746416 @default.
- W2100055302 cites W2163988547 @default.
- W2100055302 cites W2174160981 @default.
- W2100055302 cites W2180301600 @default.
- W2100055302 cites W4232383088 @default.
- W2100055302 cites W4292963524 @default.
- W2100055302 doi "https://doi.org/10.1175/2009jcli3015.1" @default.
- W2100055302 hasPublicationYear "2010" @default.
- W2100055302 type Work @default.
- W2100055302 sameAs 2100055302 @default.
- W2100055302 citedByCount "124" @default.
- W2100055302 countsByYear W21000553022012 @default.
- W2100055302 countsByYear W21000553022013 @default.
- W2100055302 countsByYear W21000553022014 @default.
- W2100055302 countsByYear W21000553022015 @default.
- W2100055302 countsByYear W21000553022016 @default.
- W2100055302 countsByYear W21000553022017 @default.
- W2100055302 countsByYear W21000553022018 @default.
- W2100055302 countsByYear W21000553022019 @default.
- W2100055302 countsByYear W21000553022020 @default.
- W2100055302 countsByYear W21000553022021 @default.
- W2100055302 countsByYear W21000553022022 @default.
- W2100055302 countsByYear W21000553022023 @default.
- W2100055302 crossrefType "journal-article" @default.
- W2100055302 hasAuthorship W2100055302A5035874769 @default.
- W2100055302 hasAuthorship W2100055302A5052026565 @default.
- W2100055302 hasBestOaLocation W21000553021 @default.
- W2100055302 hasConcept C105795698 @default.
- W2100055302 hasConcept C107673813 @default.
- W2100055302 hasConcept C11413529 @default.
- W2100055302 hasConcept C127313418 @default.
- W2100055302 hasConcept C149782125 @default.
- W2100055302 hasConcept C151406439 @default.
- W2100055302 hasConcept C178650346 @default.
- W2100055302 hasConcept C2780148112 @default.
- W2100055302 hasConcept C33923547 @default.
- W2100055302 hasConcept C39432304 @default.
- W2100055302 hasConcept C41008148 @default.
- W2100055302 hasConcept C49204034 @default.
- W2100055302 hasConceptScore W2100055302C105795698 @default.
- W2100055302 hasConceptScore W2100055302C107673813 @default.
- W2100055302 hasConceptScore W2100055302C11413529 @default.
- W2100055302 hasConceptScore W2100055302C127313418 @default.
- W2100055302 hasConceptScore W2100055302C149782125 @default.
- W2100055302 hasConceptScore W2100055302C151406439 @default.
- W2100055302 hasConceptScore W2100055302C178650346 @default.
- W2100055302 hasConceptScore W2100055302C2780148112 @default.
- W2100055302 hasConceptScore W2100055302C33923547 @default.
- W2100055302 hasConceptScore W2100055302C39432304 @default.
- W2100055302 hasConceptScore W2100055302C41008148 @default.
- W2100055302 hasConceptScore W2100055302C49204034 @default.
- W2100055302 hasIssue "10" @default.
- W2100055302 hasLocation W21000553021 @default.
- W2100055302 hasLocation W21000553022 @default.
- W2100055302 hasOpenAccess W2100055302 @default.
- W2100055302 hasPrimaryLocation W21000553021 @default.
- W2100055302 hasRelatedWork W2024105718 @default.
- W2100055302 hasRelatedWork W2096829463 @default.
- W2100055302 hasRelatedWork W2119158312 @default.
- W2100055302 hasRelatedWork W2130544840 @default.
- W2100055302 hasRelatedWork W2386767533 @default.
- W2100055302 hasRelatedWork W2390133987 @default.
- W2100055302 hasRelatedWork W2552050053 @default.
- W2100055302 hasRelatedWork W2899084033 @default.
- W2100055302 hasRelatedWork W3102500693 @default.
- W2100055302 hasRelatedWork W3121970370 @default.
- W2100055302 hasVolume "23" @default.
- W2100055302 isParatext "false" @default.
- W2100055302 isRetracted "false" @default.