Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100077772> ?p ?o ?g. }
- W2100077772 endingPage "1139" @default.
- W2100077772 startingPage "1095" @default.
- W2100077772 abstract "The prevalence of coherent oscillations in various frequency ranges in the central nervous system raises the question of the mechanisms that synchronize large populations of neurons. We study synchronization in models of large networks of spiking neurons with random sparse connectivity. Synchrony occurs only when the average number of synapses, M, that a cell receives is larger than a critical value, Mc. Below Mc, the system is in an asynchronous state. In the limit of weak coupling, assuming identical neurons, we reduce the model to a system of phase oscillators that are coupled via an effective interaction, gamma. In this framework, we develop an approximate theory for sparse networks of identical neurons to estimate Mc analytically from the Fourier coefficients of gamma. Our approach relies on the assumption that the dynamics of a neuron depend mainly on the number of cells that are presynaptic to it. We apply this theory to compute Mc for a model of inhibitory networks of integrate-and-fire (I&F) neurons as a function of the intrinsic neuronal properties (e.g., the refractory period Tr), the synaptic time constants, and the strength of the external stimulus, Iext. The number Mc is found to be nonmonotonous with the strength of Iext. For Tr = 0, we estimate the minimum value of Mc over all the parameters of the model to be 363.8. Above Mc, the neurons tend to fire in smeared one-cluster states at high firing rates and smeared two-or-more-cluster states at low firing rates. Refractoriness decreases Mc at intermediate and high firing rates. These results are compared to numerical simulations. We show numerically that systems with different sizes, N, behave in the same way provided the connectivity, M, is such that 1/Meff = 1/M - 1/N remains constant when N varies. This allows extrapolating the large N behavior of a network from numerical simulations of networks of relatively small sizes (N = 800 in our case). We find that our theory predicts with remarkable accuracy the value of Mc and the patterns of synchrony above Mc, provided the synaptic coupling is not too large. We also study the strong coupling regime of inhibitory sparse networks. All of our simulations demonstrate that increasing the coupling strength reduces the level of synchrony of the neuronal activity. Above a critical coupling strength, the network activity is asynchronous. We point out a fundamental limitation for the mechanisms of synchrony relying on inhibition alone, if heterogeneities in the intrinsic properties of the neurons and spatial fluctuations in the external input are also taken into account." @default.
- W2100077772 created "2016-06-24" @default.
- W2100077772 creator A5002155898 @default.
- W2100077772 creator A5004055821 @default.
- W2100077772 date "2000-05-01" @default.
- W2100077772 modified "2023-10-18" @default.
- W2100077772 title "The Number of Synaptic Inputs and the Synchrony of Large, Sparse Neuronal Networks" @default.
- W2100077772 cites W1501360999 @default.
- W2100077772 cites W1757730752 @default.
- W2100077772 cites W1921877271 @default.
- W2100077772 cites W1927932324 @default.
- W2100077772 cites W1948806673 @default.
- W2100077772 cites W1964251730 @default.
- W2100077772 cites W1967662813 @default.
- W2100077772 cites W1968829116 @default.
- W2100077772 cites W1970781510 @default.
- W2100077772 cites W1976738367 @default.
- W2100077772 cites W1980007064 @default.
- W2100077772 cites W1989495963 @default.
- W2100077772 cites W2001860569 @default.
- W2100077772 cites W2006279182 @default.
- W2100077772 cites W2007031766 @default.
- W2100077772 cites W2008284899 @default.
- W2100077772 cites W2008402580 @default.
- W2100077772 cites W2011459128 @default.
- W2100077772 cites W2011592285 @default.
- W2100077772 cites W2015819037 @default.
- W2100077772 cites W2020173888 @default.
- W2100077772 cites W2032938771 @default.
- W2100077772 cites W2039128802 @default.
- W2100077772 cites W2039261400 @default.
- W2100077772 cites W2047750300 @default.
- W2100077772 cites W2048419276 @default.
- W2100077772 cites W2072685125 @default.
- W2100077772 cites W2080407250 @default.
- W2100077772 cites W2086794075 @default.
- W2100077772 cites W2088754986 @default.
- W2100077772 cites W2091567533 @default.
- W2100077772 cites W2093616568 @default.
- W2100077772 cites W2095265457 @default.
- W2100077772 cites W2095768716 @default.
- W2100077772 cites W2096693511 @default.
- W2100077772 cites W2100296285 @default.
- W2100077772 cites W2102917484 @default.
- W2100077772 cites W2108083055 @default.
- W2100077772 cites W2128437100 @default.
- W2100077772 cites W2153201079 @default.
- W2100077772 cites W2154953441 @default.
- W2100077772 cites W2158424806 @default.
- W2100077772 cites W3100889734 @default.
- W2100077772 cites W4244284557 @default.
- W2100077772 cites W4250384672 @default.
- W2100077772 doi "https://doi.org/10.1162/089976600300015529" @default.
- W2100077772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10905810" @default.
- W2100077772 hasPublicationYear "2000" @default.
- W2100077772 type Work @default.
- W2100077772 sameAs 2100077772 @default.
- W2100077772 citedByCount "163" @default.
- W2100077772 countsByYear W21000777722012 @default.
- W2100077772 countsByYear W21000777722013 @default.
- W2100077772 countsByYear W21000777722014 @default.
- W2100077772 countsByYear W21000777722015 @default.
- W2100077772 countsByYear W21000777722016 @default.
- W2100077772 countsByYear W21000777722017 @default.
- W2100077772 countsByYear W21000777722018 @default.
- W2100077772 countsByYear W21000777722019 @default.
- W2100077772 countsByYear W21000777722020 @default.
- W2100077772 countsByYear W21000777722021 @default.
- W2100077772 countsByYear W21000777722022 @default.
- W2100077772 countsByYear W21000777722023 @default.
- W2100077772 crossrefType "journal-article" @default.
- W2100077772 hasAuthorship W2100077772A5002155898 @default.
- W2100077772 hasAuthorship W2100077772A5004055821 @default.
- W2100077772 hasConcept C114614502 @default.
- W2100077772 hasConcept C121332964 @default.
- W2100077772 hasConcept C121864883 @default.
- W2100077772 hasConcept C151319957 @default.
- W2100077772 hasConcept C15744967 @default.
- W2100077772 hasConcept C164705383 @default.
- W2100077772 hasConcept C169760540 @default.
- W2100077772 hasConcept C184720557 @default.
- W2100077772 hasConcept C186060115 @default.
- W2100077772 hasConcept C26873012 @default.
- W2100077772 hasConcept C2778562939 @default.
- W2100077772 hasConcept C2778794669 @default.
- W2100077772 hasConcept C2779918689 @default.
- W2100077772 hasConcept C2986219828 @default.
- W2100077772 hasConcept C31258907 @default.
- W2100077772 hasConcept C33923547 @default.
- W2100077772 hasConcept C41008148 @default.
- W2100077772 hasConcept C542102704 @default.
- W2100077772 hasConcept C70616116 @default.
- W2100077772 hasConcept C71924100 @default.
- W2100077772 hasConcept C86803240 @default.
- W2100077772 hasConceptScore W2100077772C114614502 @default.
- W2100077772 hasConceptScore W2100077772C121332964 @default.
- W2100077772 hasConceptScore W2100077772C121864883 @default.
- W2100077772 hasConceptScore W2100077772C151319957 @default.