Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103188909> ?p ?o ?g. }
- W2103188909 abstract "Social Network Analysis and Mining (SNAM) techniques have drawn significant attention in the recent years due to the popularity of online social media. With the advance of Web 2.0 and SNAM techniques, tools for aggregating, sharing, investigating, and visualizing social network data have been widely explored and developed. SNAM is effective in supporting intelligence and law enforcement force to identify suspects and extract communication patterns of terrorists or criminals. In our previous work, we have shown how social network analysis and visualization techniques are useful in discovering patterns of terrorist social networks. Attribute to the advance of SNAM techniques, relationships among social actors can be visualized through network structures explicitly and implicit patterns can be discovered automatically. Despite the advance of SNAM, the utility of a social network is highly affected by its d completeness. Missing edges or nodes in a social network will reduce the utility of the network. For example, SNAM techniques may not be able to detect groups of social actors if some of the relationships among these social actors are not available. Similarly, SNAM techniques may overestimate the distance between two social actors if some intermediate nodes or edges are missing. Unfortunately, it is common that an organization only have a partial social network due to its limited information sources. In public safety domain, each law enforcement unit has its own criminal social network constructed by the data available from the criminal intelligence and crime database but this network is only a part of the global criminal social network, which can be obtained by integrating criminal social networks from all law enforcement units. However, due to the privacy policy, law enforcement units are not allowed to share the sensitive information of their social network data. A naive and yet practical approach is anonymizing the social network data before publishing or sharing it. However, a modest privacy gains may reduce a substantial SNAM utility. It is a challenge to make a balance between privacy and utility in social network data sharing and integration. In order to share useful information among different organizations without violating the privacy policies and preserving sensitive information, we propose a generalization and probabilistic approach of social network integration in this paper. Particularly, we propose generalizing social networks to preserve privacy and integrating the probabilistic models of the shared information for SNAM. To preserve the identity of sensitive nodes in social network, a simple approach in the literature is removing all node identities. However, it only allows us to investigate of the structural properties of such anonymized social network, but the integration of multiple anonymized social networks will be impossible. To make a balance between privacy and utility, we introduce a social network integration framework which consists of three major steps: (i) constructing generalized sub-graph, (ii) creating generalized information for sharing, and (iii) social networks integration and analysis. We also propose two sub-graph generalization methods namely, edge betweenness based (EBB) and K-nearest neighbor (KNN). We evaluated the effectiveness of these algorithms on the Global Salafi Jihad terrorist social network." @default.
- W2103188909 created "2016-06-24" @default.
- W2103188909 creator A5028554136 @default.
- W2103188909 creator A5086292931 @default.
- W2103188909 date "2012-07-12" @default.
- W2103188909 modified "2023-09-25" @default.
- W2103188909 title "Social network integration and analysis using a generalization and probabilistic approach for privacy preservation" @default.
- W2103188909 cites W1544573083 @default.
- W2103188909 cites W1997631052 @default.
- W2103188909 cites W2000133061 @default.
- W2103188909 cites W2114416423 @default.
- W2103188909 cites W2124849257 @default.
- W2103188909 cites W2134167315 @default.
- W2103188909 cites W2159024459 @default.
- W2103188909 cites W24687170 @default.
- W2103188909 cites W4230274305 @default.
- W2103188909 doi "https://doi.org/10.1186/2190-8532-1-7" @default.
- W2103188909 hasPublicationYear "2012" @default.
- W2103188909 type Work @default.
- W2103188909 sameAs 2103188909 @default.
- W2103188909 citedByCount "6" @default.
- W2103188909 countsByYear W21031889092014 @default.
- W2103188909 countsByYear W21031889092015 @default.
- W2103188909 countsByYear W21031889092019 @default.
- W2103188909 crossrefType "journal-article" @default.
- W2103188909 hasAuthorship W2103188909A5028554136 @default.
- W2103188909 hasAuthorship W2103188909A5086292931 @default.
- W2103188909 hasBestOaLocation W21031889091 @default.
- W2103188909 hasConcept C114713312 @default.
- W2103188909 hasConcept C117660856 @default.
- W2103188909 hasConcept C124101348 @default.
- W2103188909 hasConcept C13540734 @default.
- W2103188909 hasConcept C136764020 @default.
- W2103188909 hasConcept C144024400 @default.
- W2103188909 hasConcept C154945302 @default.
- W2103188909 hasConcept C15744967 @default.
- W2103188909 hasConcept C169735623 @default.
- W2103188909 hasConcept C17744445 @default.
- W2103188909 hasConcept C199539241 @default.
- W2103188909 hasConcept C2522767166 @default.
- W2103188909 hasConcept C2776876444 @default.
- W2103188909 hasConcept C2780262971 @default.
- W2103188909 hasConcept C2780586970 @default.
- W2103188909 hasConcept C31258907 @default.
- W2103188909 hasConcept C36464697 @default.
- W2103188909 hasConcept C38652104 @default.
- W2103188909 hasConcept C41008148 @default.
- W2103188909 hasConcept C4727928 @default.
- W2103188909 hasConcept C49937458 @default.
- W2103188909 hasConcept C517642484 @default.
- W2103188909 hasConcept C518677369 @default.
- W2103188909 hasConcept C56739046 @default.
- W2103188909 hasConcept C62886766 @default.
- W2103188909 hasConcept C73484699 @default.
- W2103188909 hasConcept C77805123 @default.
- W2103188909 hasConceptScore W2103188909C114713312 @default.
- W2103188909 hasConceptScore W2103188909C117660856 @default.
- W2103188909 hasConceptScore W2103188909C124101348 @default.
- W2103188909 hasConceptScore W2103188909C13540734 @default.
- W2103188909 hasConceptScore W2103188909C136764020 @default.
- W2103188909 hasConceptScore W2103188909C144024400 @default.
- W2103188909 hasConceptScore W2103188909C154945302 @default.
- W2103188909 hasConceptScore W2103188909C15744967 @default.
- W2103188909 hasConceptScore W2103188909C169735623 @default.
- W2103188909 hasConceptScore W2103188909C17744445 @default.
- W2103188909 hasConceptScore W2103188909C199539241 @default.
- W2103188909 hasConceptScore W2103188909C2522767166 @default.
- W2103188909 hasConceptScore W2103188909C2776876444 @default.
- W2103188909 hasConceptScore W2103188909C2780262971 @default.
- W2103188909 hasConceptScore W2103188909C2780586970 @default.
- W2103188909 hasConceptScore W2103188909C31258907 @default.
- W2103188909 hasConceptScore W2103188909C36464697 @default.
- W2103188909 hasConceptScore W2103188909C38652104 @default.
- W2103188909 hasConceptScore W2103188909C41008148 @default.
- W2103188909 hasConceptScore W2103188909C4727928 @default.
- W2103188909 hasConceptScore W2103188909C49937458 @default.
- W2103188909 hasConceptScore W2103188909C517642484 @default.
- W2103188909 hasConceptScore W2103188909C518677369 @default.
- W2103188909 hasConceptScore W2103188909C56739046 @default.
- W2103188909 hasConceptScore W2103188909C62886766 @default.
- W2103188909 hasConceptScore W2103188909C73484699 @default.
- W2103188909 hasConceptScore W2103188909C77805123 @default.
- W2103188909 hasIssue "1" @default.
- W2103188909 hasLocation W21031889091 @default.
- W2103188909 hasOpenAccess W2103188909 @default.
- W2103188909 hasPrimaryLocation W21031889091 @default.
- W2103188909 hasRelatedWork W1038461885 @default.
- W2103188909 hasRelatedWork W1554338108 @default.
- W2103188909 hasRelatedWork W1993592135 @default.
- W2103188909 hasRelatedWork W2020631973 @default.
- W2103188909 hasRelatedWork W2103188909 @default.
- W2103188909 hasRelatedWork W2952662149 @default.
- W2103188909 hasRelatedWork W3121950545 @default.
- W2103188909 hasRelatedWork W3160699245 @default.
- W2103188909 hasRelatedWork W2244834019 @default.
- W2103188909 hasRelatedWork W2322540759 @default.
- W2103188909 hasVolume "1" @default.
- W2103188909 isParatext "false" @default.
- W2103188909 isRetracted "false" @default.
- W2103188909 magId "2103188909" @default.