Matches in SemOpenAlex for { <https://semopenalex.org/work/W2131900259> ?p ?o ?g. }
- W2131900259 endingPage "5" @default.
- W2131900259 startingPage "5" @default.
- W2131900259 abstract "To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks.This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced.Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks." @default.
- W2131900259 created "2016-06-24" @default.
- W2131900259 creator A5014388962 @default.
- W2131900259 creator A5026438913 @default.
- W2131900259 creator A5058704261 @default.
- W2131900259 date "2014-01-01" @default.
- W2131900259 modified "2023-10-13" @default.
- W2131900259 title "Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment" @default.
- W2131900259 cites W1973260612 @default.
- W2131900259 cites W1986688807 @default.
- W2131900259 cites W1997512351 @default.
- W2131900259 cites W2002286147 @default.
- W2131900259 cites W2003167710 @default.
- W2131900259 cites W2011411346 @default.
- W2131900259 cites W2036880373 @default.
- W2131900259 cites W2055459874 @default.
- W2131900259 cites W2069928080 @default.
- W2131900259 cites W2074157239 @default.
- W2131900259 cites W2076513103 @default.
- W2131900259 cites W2097288488 @default.
- W2131900259 cites W2097389802 @default.
- W2131900259 cites W2100169396 @default.
- W2131900259 cites W2106555403 @default.
- W2131900259 cites W2108579152 @default.
- W2131900259 cites W2109701112 @default.
- W2131900259 cites W2111932463 @default.
- W2131900259 cites W2114296561 @default.
- W2131900259 cites W2121762798 @default.
- W2131900259 cites W2126874285 @default.
- W2131900259 cites W2131806062 @default.
- W2131900259 cites W2139997707 @default.
- W2131900259 cites W2141239733 @default.
- W2131900259 cites W2162089072 @default.
- W2131900259 cites W2165603655 @default.
- W2131900259 cites W2166348281 @default.
- W2131900259 cites W2170484057 @default.
- W2131900259 cites W2173213060 @default.
- W2131900259 doi "https://doi.org/10.1186/1752-0509-8-5" @default.
- W2131900259 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3900469" @default.
- W2131900259 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24428926" @default.
- W2131900259 hasPublicationYear "2014" @default.
- W2131900259 type Work @default.
- W2131900259 sameAs 2131900259 @default.
- W2131900259 citedByCount "33" @default.
- W2131900259 countsByYear W21319002592014 @default.
- W2131900259 countsByYear W21319002592015 @default.
- W2131900259 countsByYear W21319002592016 @default.
- W2131900259 countsByYear W21319002592017 @default.
- W2131900259 countsByYear W21319002592018 @default.
- W2131900259 countsByYear W21319002592019 @default.
- W2131900259 countsByYear W21319002592020 @default.
- W2131900259 countsByYear W21319002592021 @default.
- W2131900259 countsByYear W21319002592022 @default.
- W2131900259 crossrefType "journal-article" @default.
- W2131900259 hasAuthorship W2131900259A5014388962 @default.
- W2131900259 hasAuthorship W2131900259A5026438913 @default.
- W2131900259 hasAuthorship W2131900259A5058704261 @default.
- W2131900259 hasBestOaLocation W21319002591 @default.
- W2131900259 hasConcept C105902424 @default.
- W2131900259 hasConcept C111919701 @default.
- W2131900259 hasConcept C11413529 @default.
- W2131900259 hasConcept C119857082 @default.
- W2131900259 hasConcept C120314980 @default.
- W2131900259 hasConcept C154945302 @default.
- W2131900259 hasConcept C159149176 @default.
- W2131900259 hasConcept C199360897 @default.
- W2131900259 hasConcept C34165917 @default.
- W2131900259 hasConcept C41008148 @default.
- W2131900259 hasConcept C58758708 @default.
- W2131900259 hasConcept C79974875 @default.
- W2131900259 hasConcept C80444323 @default.
- W2131900259 hasConcept C8880873 @default.
- W2131900259 hasConceptScore W2131900259C105902424 @default.
- W2131900259 hasConceptScore W2131900259C111919701 @default.
- W2131900259 hasConceptScore W2131900259C11413529 @default.
- W2131900259 hasConceptScore W2131900259C119857082 @default.
- W2131900259 hasConceptScore W2131900259C120314980 @default.
- W2131900259 hasConceptScore W2131900259C154945302 @default.
- W2131900259 hasConceptScore W2131900259C159149176 @default.
- W2131900259 hasConceptScore W2131900259C199360897 @default.
- W2131900259 hasConceptScore W2131900259C34165917 @default.
- W2131900259 hasConceptScore W2131900259C41008148 @default.
- W2131900259 hasConceptScore W2131900259C58758708 @default.
- W2131900259 hasConceptScore W2131900259C79974875 @default.
- W2131900259 hasConceptScore W2131900259C80444323 @default.
- W2131900259 hasConceptScore W2131900259C8880873 @default.
- W2131900259 hasIssue "1" @default.
- W2131900259 hasLocation W21319002591 @default.
- W2131900259 hasLocation W21319002592 @default.
- W2131900259 hasLocation W21319002593 @default.
- W2131900259 hasLocation W21319002594 @default.
- W2131900259 hasOpenAccess W2131900259 @default.
- W2131900259 hasPrimaryLocation W21319002591 @default.
- W2131900259 hasRelatedWork W1560122427 @default.
- W2131900259 hasRelatedWork W2357343347 @default.
- W2131900259 hasRelatedWork W2367365720 @default.
- W2131900259 hasRelatedWork W2391924736 @default.
- W2131900259 hasRelatedWork W2395019007 @default.