Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155804510> ?p ?o ?g. }
- W2155804510 endingPage "476" @default.
- W2155804510 startingPage "470" @default.
- W2155804510 abstract "Through alternative processing of pre-messenger RNAs, individual mammalian genes often produce multiple mRNA and protein isoforms that may have related, distinct or even opposing functions. Here we report an in-depth analysis of 15 diverse human tissue and cell line transcriptomes on the basis of deep sequencing of complementary DNA fragments, yielding a digital inventory of gene and mRNA isoform expression. Analyses in which sequence reads are mapped to exon–exon junctions indicated that 92–94% of human genes undergo alternative splicing, ∼86% with a minor isoform frequency of 15% or more. Differences in isoform-specific read densities indicated that most alternative splicing and alternative cleavage and polyadenylation events vary between tissues, whereas variation between individuals was approximately twofold to threefold less common. Extreme or ‘switch-like’ regulation of splicing between tissues was associated with increased sequence conservation in regulatory regions and with generation of full-length open reading frames. Patterns of alternative splicing and alternative cleavage and polyadenylation were strongly correlated across tissues, suggesting coordinated regulation of these processes, and sequence conservation of a subset of known regulatory motifs in both alternative introns and 3′ untranslated regions suggested common involvement of specific factors in tissue-level regulation of both splicing and polyadenylation. When the human genome was decoded, the lower than expected number of genes prompted renewed interest in alternative splicing — a mechanism by which more than one protein is made from a single gene. Licatalosi et al. have developed an unbiased, genome-wide method to characterize RNA–protein binding interactions in living tissue, and demonstrate its potential by applying it to the mammalian brain. They characterize the binding sites of the neuronal alternative splicing regulator, Nova, and make the unexpected discovery that it may have an additional function in regulating alternative polyadenylation. In a separate study, Wang et al. used deep sequencing of mRNAs to study alternative splicing in various human tissues and cancers. By mapping sequence reads to splice junctions, they show that alternative splicing is essentially universal in human multi-exon genes. They also show that alternative splicing is mechanistically linked to mRNA polyadenylation. This paper reports on an intensive bioinformatic analysis of human alternative splicing in various tissues and cancers. The analysis offers insight into tissue specificity, coordinated regulation and sequence conservation of alternative splicing. Evidence is also obtained that alternative splicing is mechanistically linked to a modification of mRNAs known as polyadenylation." @default.
- W2155804510 created "2016-06-24" @default.
- W2155804510 creator A5003957317 @default.
- W2155804510 creator A5015893727 @default.
- W2155804510 creator A5017324824 @default.
- W2155804510 creator A5044330303 @default.
- W2155804510 creator A5046547801 @default.
- W2155804510 creator A5048799588 @default.
- W2155804510 creator A5069297179 @default.
- W2155804510 creator A5077749659 @default.
- W2155804510 creator A5080100274 @default.
- W2155804510 date "2008-11-01" @default.
- W2155804510 modified "2023-10-18" @default.
- W2155804510 title "Alternative isoform regulation in human tissue transcriptomes" @default.
- W2155804510 cites W1913751664 @default.
- W2155804510 cites W1986113553 @default.
- W2155804510 cites W1994025422 @default.
- W2155804510 cites W2001952613 @default.
- W2155804510 cites W2003605043 @default.
- W2155804510 cites W2006931677 @default.
- W2155804510 cites W2008117561 @default.
- W2155804510 cites W2010637767 @default.
- W2155804510 cites W2015925750 @default.
- W2155804510 cites W2017213538 @default.
- W2155804510 cites W2020480100 @default.
- W2155804510 cites W2023018590 @default.
- W2155804510 cites W2026358891 @default.
- W2155804510 cites W2026671856 @default.
- W2155804510 cites W2027345413 @default.
- W2155804510 cites W2038617558 @default.
- W2155804510 cites W2041487688 @default.
- W2155804510 cites W2044117548 @default.
- W2155804510 cites W2079643255 @default.
- W2155804510 cites W2083381199 @default.
- W2155804510 cites W2085442947 @default.
- W2155804510 cites W2092645079 @default.
- W2155804510 cites W2096940705 @default.
- W2155804510 cites W2097117811 @default.
- W2155804510 cites W2097572021 @default.
- W2155804510 cites W2097694304 @default.
- W2155804510 cites W2102887078 @default.
- W2155804510 cites W2109936378 @default.
- W2155804510 cites W2114512817 @default.
- W2155804510 cites W2124169580 @default.
- W2155804510 cites W2126422513 @default.
- W2155804510 cites W2141824178 @default.
- W2155804510 cites W2145070407 @default.
- W2155804510 cites W2154431984 @default.
- W2155804510 cites W2156761781 @default.
- W2155804510 cites W2158048358 @default.
- W2155804510 cites W2158634288 @default.
- W2155804510 cites W2168909179 @default.
- W2155804510 cites W2169685494 @default.
- W2155804510 doi "https://doi.org/10.1038/nature07509" @default.
- W2155804510 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2593745" @default.
- W2155804510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18978772" @default.
- W2155804510 hasPublicationYear "2008" @default.
- W2155804510 type Work @default.
- W2155804510 sameAs 2155804510 @default.
- W2155804510 citedByCount "4362" @default.
- W2155804510 countsByYear W21558045102012 @default.
- W2155804510 countsByYear W21558045102013 @default.
- W2155804510 countsByYear W21558045102014 @default.
- W2155804510 countsByYear W21558045102015 @default.
- W2155804510 countsByYear W21558045102016 @default.
- W2155804510 countsByYear W21558045102017 @default.
- W2155804510 countsByYear W21558045102018 @default.
- W2155804510 countsByYear W21558045102019 @default.
- W2155804510 countsByYear W21558045102020 @default.
- W2155804510 countsByYear W21558045102021 @default.
- W2155804510 countsByYear W21558045102022 @default.
- W2155804510 countsByYear W21558045102023 @default.
- W2155804510 crossrefType "journal-article" @default.
- W2155804510 hasAuthorship W2155804510A5003957317 @default.
- W2155804510 hasAuthorship W2155804510A5015893727 @default.
- W2155804510 hasAuthorship W2155804510A5017324824 @default.
- W2155804510 hasAuthorship W2155804510A5044330303 @default.
- W2155804510 hasAuthorship W2155804510A5046547801 @default.
- W2155804510 hasAuthorship W2155804510A5048799588 @default.
- W2155804510 hasAuthorship W2155804510A5069297179 @default.
- W2155804510 hasAuthorship W2155804510A5077749659 @default.
- W2155804510 hasAuthorship W2155804510A5080100274 @default.
- W2155804510 hasBestOaLocation W21558045102 @default.
- W2155804510 hasConcept C104317684 @default.
- W2155804510 hasConcept C105580179 @default.
- W2155804510 hasConcept C141231307 @default.
- W2155804510 hasConcept C142575336 @default.
- W2155804510 hasConcept C194583182 @default.
- W2155804510 hasConcept C197077220 @default.
- W2155804510 hasConcept C36823959 @default.
- W2155804510 hasConcept C53345823 @default.
- W2155804510 hasConcept C54355233 @default.
- W2155804510 hasConcept C54458228 @default.
- W2155804510 hasConcept C67585878 @default.
- W2155804510 hasConcept C67705224 @default.
- W2155804510 hasConcept C86803240 @default.
- W2155804510 hasConcept C89604277 @default.
- W2155804510 hasConcept C94671646 @default.