Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162830565> ?p ?o ?g. }
- W2162830565 endingPage "4182" @default.
- W2162830565 startingPage "4167" @default.
- W2162830565 abstract "We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge." @default.
- W2162830565 created "2016-06-24" @default.
- W2162830565 creator A5006934895 @default.
- W2162830565 creator A5011940218 @default.
- W2162830565 creator A5015937614 @default.
- W2162830565 creator A5021807188 @default.
- W2162830565 creator A5024047873 @default.
- W2162830565 creator A5033725683 @default.
- W2162830565 creator A5034890974 @default.
- W2162830565 creator A5045835301 @default.
- W2162830565 creator A5053364336 @default.
- W2162830565 creator A5057866160 @default.
- W2162830565 creator A5069112797 @default.
- W2162830565 creator A5070568170 @default.
- W2162830565 creator A5071827492 @default.
- W2162830565 creator A5089705928 @default.
- W2162830565 date "2015-04-26" @default.
- W2162830565 modified "2023-09-26" @default.
- W2162830565 title "Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models" @default.
- W2162830565 cites W1534477342 @default.
- W2162830565 cites W1603903339 @default.
- W2162830565 cites W1928998639 @default.
- W2162830565 cites W1971141173 @default.
- W2162830565 cites W1971376634 @default.
- W2162830565 cites W1977577385 @default.
- W2162830565 cites W1978195308 @default.
- W2162830565 cites W1984037038 @default.
- W2162830565 cites W1986052395 @default.
- W2162830565 cites W1989943831 @default.
- W2162830565 cites W1992140675 @default.
- W2162830565 cites W1992436001 @default.
- W2162830565 cites W1994910261 @default.
- W2162830565 cites W1997338841 @default.
- W2162830565 cites W2000966824 @default.
- W2162830565 cites W2009186677 @default.
- W2162830565 cites W2013526262 @default.
- W2162830565 cites W2025133978 @default.
- W2162830565 cites W2027837618 @default.
- W2162830565 cites W2050790859 @default.
- W2162830565 cites W2061670942 @default.
- W2162830565 cites W2066323326 @default.
- W2162830565 cites W2077239836 @default.
- W2162830565 cites W2078120610 @default.
- W2162830565 cites W2093369971 @default.
- W2162830565 cites W2097645103 @default.
- W2162830565 cites W2097656361 @default.
- W2162830565 cites W2097683921 @default.
- W2162830565 cites W2098597355 @default.
- W2162830565 cites W2105311148 @default.
- W2162830565 cites W2109781146 @default.
- W2162830565 cites W2110808585 @default.
- W2162830565 cites W2115807273 @default.
- W2162830565 cites W2121514846 @default.
- W2162830565 cites W2122825543 @default.
- W2162830565 cites W2123872832 @default.
- W2162830565 cites W2128343509 @default.
- W2162830565 cites W2140247198 @default.
- W2162830565 cites W2143142289 @default.
- W2162830565 cites W2145807088 @default.
- W2162830565 cites W2147311167 @default.
- W2162830565 cites W2150965754 @default.
- W2162830565 cites W2153118028 @default.
- W2162830565 cites W2155496693 @default.
- W2162830565 cites W2157470879 @default.
- W2162830565 cites W2158275940 @default.
- W2162830565 cites W2161998322 @default.
- W2162830565 cites W2163148732 @default.
- W2162830565 cites W4234698323 @default.
- W2162830565 doi "https://doi.org/10.1093/hmg/ddv145" @default.
- W2162830565 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4476450" @default.
- W2162830565 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25918167" @default.
- W2162830565 hasPublicationYear "2015" @default.
- W2162830565 type Work @default.
- W2162830565 sameAs 2162830565 @default.
- W2162830565 citedByCount "24" @default.
- W2162830565 countsByYear W21628305652015 @default.
- W2162830565 countsByYear W21628305652016 @default.
- W2162830565 countsByYear W21628305652017 @default.
- W2162830565 countsByYear W21628305652018 @default.
- W2162830565 countsByYear W21628305652019 @default.
- W2162830565 countsByYear W21628305652020 @default.
- W2162830565 countsByYear W21628305652021 @default.
- W2162830565 countsByYear W21628305652022 @default.
- W2162830565 countsByYear W21628305652023 @default.
- W2162830565 crossrefType "journal-article" @default.
- W2162830565 hasAuthorship W2162830565A5006934895 @default.
- W2162830565 hasAuthorship W2162830565A5011940218 @default.
- W2162830565 hasAuthorship W2162830565A5015937614 @default.
- W2162830565 hasAuthorship W2162830565A5021807188 @default.
- W2162830565 hasAuthorship W2162830565A5024047873 @default.
- W2162830565 hasAuthorship W2162830565A5033725683 @default.
- W2162830565 hasAuthorship W2162830565A5034890974 @default.
- W2162830565 hasAuthorship W2162830565A5045835301 @default.
- W2162830565 hasAuthorship W2162830565A5053364336 @default.
- W2162830565 hasAuthorship W2162830565A5057866160 @default.
- W2162830565 hasAuthorship W2162830565A5069112797 @default.
- W2162830565 hasAuthorship W2162830565A5070568170 @default.
- W2162830565 hasAuthorship W2162830565A5071827492 @default.