Matches in SemOpenAlex for { <https://semopenalex.org/work/W2184023242> ?p ?o ?g. }
- W2184023242 endingPage "192" @default.
- W2184023242 startingPage "179" @default.
- W2184023242 abstract "Electronic health records (EHR), containing rich clinical histories of large patient populations, can provide evidence for clinical decisions when evidence from trials and literature is absent. To enable such observational studies from EHR in real time, particularly in emergencies, rapid confounder control methods that can handle numerous variables and adjust for biases are imperative. This study compares the performance of 18 automatic confounder control methods.Methods include propensity scores, direct adjustment by machine learning, similarity matching and resampling in two simulated and one real-world EHR datasets.Direct adjustment by lasso regression and ensemble models involving multiple resamples have performance comparable to expert-based propensity scores and thus, may help provide real-time EHR-based evidence for timely clinical decisions." @default.
- W2184023242 created "2016-06-24" @default.
- W2184023242 creator A5017542449 @default.
- W2184023242 creator A5041175834 @default.
- W2184023242 creator A5080793911 @default.
- W2184023242 date "2016-03-01" @default.
- W2184023242 modified "2023-10-14" @default.
- W2184023242 title "Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records" @default.
- W2184023242 cites W1538826226 @default.
- W2184023242 cites W156729095 @default.
- W2184023242 cites W1672197616 @default.
- W2184023242 cites W1808652302 @default.
- W2184023242 cites W1875061881 @default.
- W2184023242 cites W1904706047 @default.
- W2184023242 cites W1922498403 @default.
- W2184023242 cites W1967862917 @default.
- W2184023242 cites W1971846869 @default.
- W2184023242 cites W1983141380 @default.
- W2184023242 cites W1984454461 @default.
- W2184023242 cites W1990467158 @default.
- W2184023242 cites W1996133499 @default.
- W2184023242 cites W1998368672 @default.
- W2184023242 cites W1999822211 @default.
- W2184023242 cites W2000991311 @default.
- W2184023242 cites W2002646960 @default.
- W2184023242 cites W2028040032 @default.
- W2184023242 cites W2034309896 @default.
- W2184023242 cites W2045068841 @default.
- W2184023242 cites W2048470090 @default.
- W2184023242 cites W2051177122 @default.
- W2184023242 cites W2051203581 @default.
- W2184023242 cites W2059121696 @default.
- W2184023242 cites W2066071728 @default.
- W2184023242 cites W2067235700 @default.
- W2184023242 cites W2072363658 @default.
- W2184023242 cites W2076302670 @default.
- W2184023242 cites W2083721602 @default.
- W2184023242 cites W2088252549 @default.
- W2184023242 cites W2092218554 @default.
- W2184023242 cites W2097360283 @default.
- W2184023242 cites W2097364929 @default.
- W2184023242 cites W2106797966 @default.
- W2184023242 cites W2111412070 @default.
- W2184023242 cites W2111635289 @default.
- W2184023242 cites W2111727585 @default.
- W2184023242 cites W2113242816 @default.
- W2184023242 cites W2114831632 @default.
- W2184023242 cites W2120224267 @default.
- W2184023242 cites W2132324013 @default.
- W2184023242 cites W2138479545 @default.
- W2184023242 cites W2139491581 @default.
- W2184023242 cites W2140074098 @default.
- W2184023242 cites W2143416241 @default.
- W2184023242 cites W2146774335 @default.
- W2184023242 cites W2150291618 @default.
- W2184023242 cites W2151068025 @default.
- W2184023242 cites W2152761983 @default.
- W2184023242 cites W2154872949 @default.
- W2184023242 cites W2155163959 @default.
- W2184023242 cites W2158958709 @default.
- W2184023242 cites W2159583324 @default.
- W2184023242 cites W2159805452 @default.
- W2184023242 cites W2164498941 @default.
- W2184023242 cites W2168458505 @default.
- W2184023242 cites W2168528736 @default.
- W2184023242 cites W2325061985 @default.
- W2184023242 cites W2911964244 @default.
- W2184023242 cites W3122049309 @default.
- W2184023242 cites W4294541781 @default.
- W2184023242 doi "https://doi.org/10.2217/cer.15.53" @default.
- W2184023242 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4933592" @default.
- W2184023242 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26634383" @default.
- W2184023242 hasPublicationYear "2016" @default.
- W2184023242 type Work @default.
- W2184023242 sameAs 2184023242 @default.
- W2184023242 citedByCount "20" @default.
- W2184023242 countsByYear W21840232422016 @default.
- W2184023242 countsByYear W21840232422017 @default.
- W2184023242 countsByYear W21840232422018 @default.
- W2184023242 countsByYear W21840232422019 @default.
- W2184023242 countsByYear W21840232422020 @default.
- W2184023242 countsByYear W21840232422021 @default.
- W2184023242 countsByYear W21840232422022 @default.
- W2184023242 countsByYear W21840232422023 @default.
- W2184023242 crossrefType "journal-article" @default.
- W2184023242 hasAuthorship W2184023242A5017542449 @default.
- W2184023242 hasAuthorship W2184023242A5041175834 @default.
- W2184023242 hasAuthorship W2184023242A5080793911 @default.
- W2184023242 hasBestOaLocation W21840232421 @default.
- W2184023242 hasConcept C103278499 @default.
- W2184023242 hasConcept C115961682 @default.
- W2184023242 hasConcept C119857082 @default.
- W2184023242 hasConcept C124101348 @default.
- W2184023242 hasConcept C126322002 @default.
- W2184023242 hasConcept C136764020 @default.
- W2184023242 hasConcept C142724271 @default.
- W2184023242 hasConcept C149782125 @default.
- W2184023242 hasConcept C150921843 @default.