Matches in SemOpenAlex for { <https://semopenalex.org/work/W2268781370> ?p ?o ?g. }
- W2268781370 abstract "The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem, due to the non-uniqueness of the solution, and many kinds of prior information have been used to constrain it. A combination of smoothness (L2 norm-based) and sparseness (L1 norm-based) constraints is a flexible approach that have been pursued by important examples such as the Elastic Net (ENET) and mixed-norm (MXN) models. The former is used to find solutions with a small number of smooth non-zero patches, while the latter imposes sparseness and smoothness simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using computationally intensive Monte Carlo/Expectation Maximization methods. In this work we attempt to solve the EEG IP using a Bayesian framework for models based on mixtures of L1/L2 norms penalization functions (Laplace/Normal priors) such as ENET and MXN. We propose a Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using simple but realistic simulations we found that our methods are able to recover complicated source setups more accurately and with a more robust variable selection than the ENET and LASSO solutions using classical algorithms. We also solve the EEG IP using data coming from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods, as compared with other known methods such as LORETA, ENET and LASSO FUSION using the classical regularization approach." @default.
- W2268781370 created "2016-06-24" @default.
- W2268781370 creator A5005434308 @default.
- W2268781370 creator A5022043877 @default.
- W2268781370 creator A5023809247 @default.
- W2268781370 creator A5051377258 @default.
- W2268781370 creator A5087318913 @default.
- W2268781370 date "2016-01-25" @default.
- W2268781370 modified "2023-09-27" @default.
- W2268781370 title "Empirical bayes formulation of the elastic net and mixed-norm models: application to the eeg inverse problem" @default.
- W2268781370 cites W1503398984 @default.
- W2268781370 cites W1648445109 @default.
- W2268781370 cites W1660287944 @default.
- W2268781370 cites W1967970656 @default.
- W2268781370 cites W1970304186 @default.
- W2268781370 cites W197076444 @default.
- W2268781370 cites W1976365540 @default.
- W2268781370 cites W1982652137 @default.
- W2268781370 cites W2004902549 @default.
- W2268781370 cites W2007364043 @default.
- W2268781370 cites W2010441486 @default.
- W2268781370 cites W2021834312 @default.
- W2268781370 cites W2044696706 @default.
- W2268781370 cites W2045887127 @default.
- W2268781370 cites W2047028564 @default.
- W2268781370 cites W2065513175 @default.
- W2268781370 cites W2068912356 @default.
- W2268781370 cites W2069674721 @default.
- W2268781370 cites W2072827336 @default.
- W2268781370 cites W2074682976 @default.
- W2268781370 cites W2098069002 @default.
- W2268781370 cites W2100556411 @default.
- W2268781370 cites W2116302261 @default.
- W2268781370 cites W2122825543 @default.
- W2268781370 cites W2123211058 @default.
- W2268781370 cites W2140514146 @default.
- W2268781370 cites W2152811887 @default.
- W2268781370 cites W2155136387 @default.
- W2268781370 cites W2576717590 @default.
- W2268781370 cites W2797638056 @default.
- W2268781370 cites W2954799503 @default.
- W2268781370 cites W305016405 @default.
- W2268781370 cites W3140968660 @default.
- W2268781370 cites W45374770 @default.
- W2268781370 hasPublicationYear "2016" @default.
- W2268781370 type Work @default.
- W2268781370 sameAs 2268781370 @default.
- W2268781370 citedByCount "0" @default.
- W2268781370 crossrefType "posted-content" @default.
- W2268781370 hasAuthorship W2268781370A5005434308 @default.
- W2268781370 hasAuthorship W2268781370A5022043877 @default.
- W2268781370 hasAuthorship W2268781370A5023809247 @default.
- W2268781370 hasAuthorship W2268781370A5051377258 @default.
- W2268781370 hasAuthorship W2268781370A5087318913 @default.
- W2268781370 hasConcept C102634674 @default.
- W2268781370 hasConcept C105795698 @default.
- W2268781370 hasConcept C107673813 @default.
- W2268781370 hasConcept C11413529 @default.
- W2268781370 hasConcept C126255220 @default.
- W2268781370 hasConcept C134306372 @default.
- W2268781370 hasConcept C135252773 @default.
- W2268781370 hasConcept C136764020 @default.
- W2268781370 hasConcept C148483581 @default.
- W2268781370 hasConcept C154945302 @default.
- W2268781370 hasConcept C157553263 @default.
- W2268781370 hasConcept C160234255 @default.
- W2268781370 hasConcept C17744445 @default.
- W2268781370 hasConcept C177769412 @default.
- W2268781370 hasConcept C191795146 @default.
- W2268781370 hasConcept C199539241 @default.
- W2268781370 hasConcept C203868755 @default.
- W2268781370 hasConcept C207201462 @default.
- W2268781370 hasConcept C33923547 @default.
- W2268781370 hasConcept C37616216 @default.
- W2268781370 hasConcept C41008148 @default.
- W2268781370 hasConcept C49781872 @default.
- W2268781370 hasConcept C8642999 @default.
- W2268781370 hasConcept C9810830 @default.
- W2268781370 hasConceptScore W2268781370C102634674 @default.
- W2268781370 hasConceptScore W2268781370C105795698 @default.
- W2268781370 hasConceptScore W2268781370C107673813 @default.
- W2268781370 hasConceptScore W2268781370C11413529 @default.
- W2268781370 hasConceptScore W2268781370C126255220 @default.
- W2268781370 hasConceptScore W2268781370C134306372 @default.
- W2268781370 hasConceptScore W2268781370C135252773 @default.
- W2268781370 hasConceptScore W2268781370C136764020 @default.
- W2268781370 hasConceptScore W2268781370C148483581 @default.
- W2268781370 hasConceptScore W2268781370C154945302 @default.
- W2268781370 hasConceptScore W2268781370C157553263 @default.
- W2268781370 hasConceptScore W2268781370C160234255 @default.
- W2268781370 hasConceptScore W2268781370C17744445 @default.
- W2268781370 hasConceptScore W2268781370C177769412 @default.
- W2268781370 hasConceptScore W2268781370C191795146 @default.
- W2268781370 hasConceptScore W2268781370C199539241 @default.
- W2268781370 hasConceptScore W2268781370C203868755 @default.
- W2268781370 hasConceptScore W2268781370C207201462 @default.
- W2268781370 hasConceptScore W2268781370C33923547 @default.
- W2268781370 hasConceptScore W2268781370C37616216 @default.
- W2268781370 hasConceptScore W2268781370C41008148 @default.
- W2268781370 hasConceptScore W2268781370C49781872 @default.