Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275702930> ?p ?o ?g. }
- W2275702930 abstract "Melting in two dimensions can successfully be explained with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario which describes the formation of the high-symmetry phase with the thermal activation of topological defects within an (ideally) infinite monodomain. With all state variables being well defined, it should hold also as freezing scenario where oppositely charged topological defects annihilate. The Kibble-Zurek mechanism, on the other hand, shows that spontaneous symmetry breaking alongside a continuous phase transition cannot support an infinite monodomain but leads to polycrystallinity. For any nonzero cooling rate, critical fluctuations will be frozen out in the vicinity of the transition temperature. This leads to domains with different director of the broken symmetry, separated by a defect structure, e.g., grain boundaries in crystalline systems. After instantaneously quenching a colloidal monolayer from a polycrystalline to the isotropic fluid state, we show that such grain boundaries increase the probability for the formation of dislocations. In addition, we determine the temporal decay of defect core energies during the first few Brownian times after the quench. Despite the fact that the KTHNY scenario describes a continuous phase transition and phase equilibrium does not exist, melting in polycrystalline samples starts at grain boundaries similar to first-order phase transitions." @default.
- W2275702930 created "2016-06-24" @default.
- W2275702930 creator A5019323827 @default.
- W2275702930 creator A5035636147 @default.
- W2275702930 creator A5056345720 @default.
- W2275702930 creator A5084643925 @default.
- W2275702930 date "2015-12-09" @default.
- W2275702930 modified "2023-10-16" @default.
- W2275702930 title "Grain-boundary-induced melting in quenched polycrystalline monolayers" @default.
- W2275702930 cites W1964381735 @default.
- W2275702930 cites W1966936427 @default.
- W2275702930 cites W1969312172 @default.
- W2275702930 cites W1973205381 @default.
- W2275702930 cites W1975867499 @default.
- W2275702930 cites W1976916363 @default.
- W2275702930 cites W1980562943 @default.
- W2275702930 cites W1986011821 @default.
- W2275702930 cites W1989330344 @default.
- W2275702930 cites W1992212127 @default.
- W2275702930 cites W1993957695 @default.
- W2275702930 cites W1997307767 @default.
- W2275702930 cites W2000799940 @default.
- W2275702930 cites W2001953079 @default.
- W2275702930 cites W2004836855 @default.
- W2275702930 cites W2005526678 @default.
- W2275702930 cites W2007233433 @default.
- W2275702930 cites W2016718193 @default.
- W2275702930 cites W2018669955 @default.
- W2275702930 cites W2021528014 @default.
- W2275702930 cites W2035496608 @default.
- W2275702930 cites W2035519643 @default.
- W2275702930 cites W2035981975 @default.
- W2275702930 cites W2037822007 @default.
- W2275702930 cites W2038865389 @default.
- W2275702930 cites W2039326276 @default.
- W2275702930 cites W2039427368 @default.
- W2275702930 cites W2044348516 @default.
- W2275702930 cites W2044996006 @default.
- W2275702930 cites W2046855636 @default.
- W2275702930 cites W2048084283 @default.
- W2275702930 cites W2051477770 @default.
- W2275702930 cites W2052801948 @default.
- W2275702930 cites W2061399145 @default.
- W2275702930 cites W2062539748 @default.
- W2275702930 cites W2063753400 @default.
- W2275702930 cites W2065469285 @default.
- W2275702930 cites W2067963325 @default.
- W2275702930 cites W2068151579 @default.
- W2275702930 cites W2068488056 @default.
- W2275702930 cites W2068944321 @default.
- W2275702930 cites W2069547789 @default.
- W2275702930 cites W2070980589 @default.
- W2275702930 cites W2072539447 @default.
- W2275702930 cites W2076659687 @default.
- W2275702930 cites W2086860422 @default.
- W2275702930 cites W2088757040 @default.
- W2275702930 cites W2092405946 @default.
- W2275702930 cites W2097400434 @default.
- W2275702930 cites W2105177113 @default.
- W2275702930 cites W2124807913 @default.
- W2275702930 cites W2142768579 @default.
- W2275702930 cites W2165206025 @default.
- W2275702930 cites W2244001718 @default.
- W2275702930 cites W2326245644 @default.
- W2275702930 cites W3102083514 @default.
- W2275702930 cites W4243447276 @default.
- W2275702930 doi "https://doi.org/10.1103/physreve.92.060302" @default.
- W2275702930 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26764613" @default.
- W2275702930 hasPublicationYear "2015" @default.
- W2275702930 type Work @default.
- W2275702930 sameAs 2275702930 @default.
- W2275702930 citedByCount "8" @default.
- W2275702930 countsByYear W22757029302017 @default.
- W2275702930 countsByYear W22757029302018 @default.
- W2275702930 countsByYear W22757029302019 @default.
- W2275702930 countsByYear W22757029302020 @default.
- W2275702930 countsByYear W22757029302022 @default.
- W2275702930 crossrefType "journal-article" @default.
- W2275702930 hasAuthorship W2275702930A5019323827 @default.
- W2275702930 hasAuthorship W2275702930A5035636147 @default.
- W2275702930 hasAuthorship W2275702930A5056345720 @default.
- W2275702930 hasAuthorship W2275702930A5084643925 @default.
- W2275702930 hasBestOaLocation W22757029302 @default.
- W2275702930 hasConcept C104862878 @default.
- W2275702930 hasConcept C121332964 @default.
- W2275702930 hasConcept C121745418 @default.
- W2275702930 hasConcept C137637335 @default.
- W2275702930 hasConcept C149288129 @default.
- W2275702930 hasConcept C159985019 @default.
- W2275702930 hasConcept C171250308 @default.
- W2275702930 hasConcept C184050105 @default.
- W2275702930 hasConcept C191897082 @default.
- W2275702930 hasConcept C192562407 @default.
- W2275702930 hasConcept C2524010 @default.
- W2275702930 hasConcept C26873012 @default.
- W2275702930 hasConcept C2779886137 @default.
- W2275702930 hasConcept C33923547 @default.
- W2275702930 hasConcept C44280652 @default.
- W2275702930 hasConcept C47908070 @default.
- W2275702930 hasConcept C5637370 @default.