Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313834463> ?p ?o ?g. }
- W2313834463 endingPage "240" @default.
- W2313834463 startingPage "230" @default.
- W2313834463 abstract "Outdoor aerosols are transported indoors, where their component concentrations depend on aerosol size, physiochemical properties, indoor sources and losses, and cross-environment gradients of temperature and relative humidity. We explored these dependencies by measuring real-time outdoor and indoor non-refractory, submicron (PM1) aerosol component mass concentrations in a mixed-use laboratory space with an Aerodyne mini-aerosol mass spectrometer (AMS) and black carbon (BC) with an aethalometer. The median indoor/outdoor (I/O) ratios were 0.60 for sulfate, 0.25 for nitrate, 0.52 for ammonium, 0.73 for organics, and 0.61 for BC. Positive matrix factorization (PMF) on organic aerosol data identified hydrocarbon-like (HOA), cooking (COA), and oxygenated (OOA) factors. By assuming sulfate was nonvolatile, lost only by mechanical processes, and without indoor sources, the transformations of other components i due to partitioning changes or indoor sources were parameterized by normalizing their I/O ratios by sulfate's I/O ratio, that is, (I/O)i/SO4. Component-specific behavior was quantified by regressions of (I/O)i/SO4 to outdoor-to-indoor temperature differences. Nitrate and HOA strongly and OOA weakly showed losses with increasing temperatures indoors vs. outdoors, and HOA likely had an indoor source. To our knowledge, this is the first reported deployment of an AMS to analyze real-time indoor aerosol composition and outdoor-to-indoor transformation." @default.
- W2313834463 created "2016-06-24" @default.
- W2313834463 creator A5052255905 @default.
- W2313834463 creator A5053220317 @default.
- W2313834463 creator A5087126332 @default.
- W2313834463 date "2016-04-18" @default.
- W2313834463 modified "2023-10-17" @default.
- W2313834463 title "Real‐time transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry" @default.
- W2313834463 cites W1559399347 @default.
- W2313834463 cites W1935255033 @default.
- W2313834463 cites W1968862760 @default.
- W2313834463 cites W1973118576 @default.
- W2313834463 cites W1977992740 @default.
- W2313834463 cites W1982548199 @default.
- W2313834463 cites W1988883853 @default.
- W2313834463 cites W2008105289 @default.
- W2313834463 cites W2010026903 @default.
- W2313834463 cites W2012394874 @default.
- W2313834463 cites W2012965359 @default.
- W2313834463 cites W2016172778 @default.
- W2313834463 cites W2021198116 @default.
- W2313834463 cites W2023759807 @default.
- W2313834463 cites W2033426991 @default.
- W2313834463 cites W2040349821 @default.
- W2313834463 cites W2043933527 @default.
- W2313834463 cites W2044196293 @default.
- W2313834463 cites W2045772186 @default.
- W2313834463 cites W2047701150 @default.
- W2313834463 cites W2051517301 @default.
- W2313834463 cites W2052016434 @default.
- W2313834463 cites W2053026844 @default.
- W2313834463 cites W2056857971 @default.
- W2313834463 cites W2058901746 @default.
- W2313834463 cites W2062979333 @default.
- W2313834463 cites W2064804997 @default.
- W2313834463 cites W2066926041 @default.
- W2313834463 cites W2068063821 @default.
- W2313834463 cites W2068473864 @default.
- W2313834463 cites W2072928175 @default.
- W2313834463 cites W2073712463 @default.
- W2313834463 cites W2079293731 @default.
- W2313834463 cites W2081118881 @default.
- W2313834463 cites W2084287561 @default.
- W2313834463 cites W2084540918 @default.
- W2313834463 cites W2085149182 @default.
- W2313834463 cites W2103472691 @default.
- W2313834463 cites W2103575397 @default.
- W2313834463 cites W2116507044 @default.
- W2313834463 cites W2116696968 @default.
- W2313834463 cites W2117610650 @default.
- W2313834463 cites W2121650519 @default.
- W2313834463 cites W2121941478 @default.
- W2313834463 cites W2134309305 @default.
- W2313834463 cites W2135400312 @default.
- W2313834463 cites W2138858340 @default.
- W2313834463 cites W2141693044 @default.
- W2313834463 cites W2141843316 @default.
- W2313834463 cites W2142034878 @default.
- W2313834463 cites W2146815278 @default.
- W2313834463 cites W2149811867 @default.
- W2313834463 cites W2159200188 @default.
- W2313834463 cites W2159368542 @default.
- W2313834463 cites W2165968856 @default.
- W2313834463 cites W2166604768 @default.
- W2313834463 cites W2168143240 @default.
- W2313834463 cites W2291431326 @default.
- W2313834463 cites W4255632308 @default.
- W2313834463 cites W4292822122 @default.
- W2313834463 doi "https://doi.org/10.1111/ina.12299" @default.
- W2313834463 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27008502" @default.
- W2313834463 hasPublicationYear "2016" @default.
- W2313834463 type Work @default.
- W2313834463 sameAs 2313834463 @default.
- W2313834463 citedByCount "55" @default.
- W2313834463 countsByYear W23138344632017 @default.
- W2313834463 countsByYear W23138344632018 @default.
- W2313834463 countsByYear W23138344632019 @default.
- W2313834463 countsByYear W23138344632020 @default.
- W2313834463 countsByYear W23138344632021 @default.
- W2313834463 countsByYear W23138344632022 @default.
- W2313834463 countsByYear W23138344632023 @default.
- W2313834463 crossrefType "journal-article" @default.
- W2313834463 hasAuthorship W2313834463A5052255905 @default.
- W2313834463 hasAuthorship W2313834463A5053220317 @default.
- W2313834463 hasAuthorship W2313834463A5087126332 @default.
- W2313834463 hasBestOaLocation W23138344631 @default.
- W2313834463 hasConcept C107872376 @default.
- W2313834463 hasConcept C121332964 @default.
- W2313834463 hasConcept C127313418 @default.
- W2313834463 hasConcept C153294291 @default.
- W2313834463 hasConcept C158960510 @default.
- W2313834463 hasConcept C162356407 @default.
- W2313834463 hasConcept C176933379 @default.
- W2313834463 hasConcept C178790620 @default.
- W2313834463 hasConcept C185592680 @default.
- W2313834463 hasConcept C2775931202 @default.
- W2313834463 hasConcept C2776384668 @default.
- W2313834463 hasConcept C2778343803 @default.