Matches in SemOpenAlex for { <https://semopenalex.org/work/W2516792835> ?p ?o ?g. }
- W2516792835 abstract "In 1974, Helmut Wielandt proved that in a finite group $G$, a subgroup $A$ is subnormal if and only if it is subnormal in every $seq{A,g}$ for all $gin G$. In this paper, we prove that the subnormality of an odd order nilpotent subgroup $A$ of $G$ is already guaranteed by a seemingly weaker condition: $A$ is subnormal in $G$ if for every conjugacy class $C$ of $G$ there exists $cin C$ for which $A$ is subnormal in $seq{A,c}$. We also prove the following property of finite non-abelian simple groups: if $A$ is a subgroup of odd prime order $p$ in a finite almost simple group $G$, then there exists a cyclic $p'$-subgroup of $F^*(G)$ which does not normalise any non-trivial $p$-subgroup of $G$ that is generated by conjugates of~$A$." @default.
- W2516792835 created "2016-09-16" @default.
- W2516792835 creator A5071690473 @default.
- W2516792835 creator A5075638024 @default.
- W2516792835 date "2016-08-16" @default.
- W2516792835 modified "2023-09-27" @default.
- W2516792835 title "A generalisation of a theorem of Wielandt" @default.
- W2516792835 cites W12766527 @default.
- W2516792835 cites W1501381924 @default.
- W2516792835 cites W1565081156 @default.
- W2516792835 cites W1604368405 @default.
- W2516792835 cites W1971588218 @default.
- W2516792835 cites W1993452345 @default.
- W2516792835 cites W2015006675 @default.
- W2516792835 cites W2018543337 @default.
- W2516792835 cites W2024969197 @default.
- W2516792835 cites W2031506227 @default.
- W2516792835 cites W2048813750 @default.
- W2516792835 cites W2080153586 @default.
- W2516792835 cites W2575302490 @default.
- W2516792835 cites W2963805673 @default.
- W2516792835 hasPublicationYear "2016" @default.
- W2516792835 type Work @default.
- W2516792835 sameAs 2516792835 @default.
- W2516792835 citedByCount "0" @default.
- W2516792835 crossrefType "posted-content" @default.
- W2516792835 hasAuthorship W2516792835A5071690473 @default.
- W2516792835 hasAuthorship W2516792835A5075638024 @default.
- W2516792835 hasConcept C10138342 @default.
- W2516792835 hasConcept C104317684 @default.
- W2516792835 hasConcept C111472728 @default.
- W2516792835 hasConcept C112313634 @default.
- W2516792835 hasConcept C114614502 @default.
- W2516792835 hasConcept C121332964 @default.
- W2516792835 hasConcept C127716648 @default.
- W2516792835 hasConcept C136170076 @default.
- W2516792835 hasConcept C138885662 @default.
- W2516792835 hasConcept C143132287 @default.
- W2516792835 hasConcept C154945302 @default.
- W2516792835 hasConcept C160826032 @default.
- W2516792835 hasConcept C162324750 @default.
- W2516792835 hasConcept C182306322 @default.
- W2516792835 hasConcept C184992742 @default.
- W2516792835 hasConcept C185592680 @default.
- W2516792835 hasConcept C188082640 @default.
- W2516792835 hasConcept C2777212361 @default.
- W2516792835 hasConcept C2777404646 @default.
- W2516792835 hasConcept C2780586882 @default.
- W2516792835 hasConcept C2781311116 @default.
- W2516792835 hasConcept C30236536 @default.
- W2516792835 hasConcept C33923547 @default.
- W2516792835 hasConcept C41008148 @default.
- W2516792835 hasConcept C50555996 @default.
- W2516792835 hasConcept C55493867 @default.
- W2516792835 hasConcept C62520636 @default.
- W2516792835 hasConcept C87945829 @default.
- W2516792835 hasConceptScore W2516792835C10138342 @default.
- W2516792835 hasConceptScore W2516792835C104317684 @default.
- W2516792835 hasConceptScore W2516792835C111472728 @default.
- W2516792835 hasConceptScore W2516792835C112313634 @default.
- W2516792835 hasConceptScore W2516792835C114614502 @default.
- W2516792835 hasConceptScore W2516792835C121332964 @default.
- W2516792835 hasConceptScore W2516792835C127716648 @default.
- W2516792835 hasConceptScore W2516792835C136170076 @default.
- W2516792835 hasConceptScore W2516792835C138885662 @default.
- W2516792835 hasConceptScore W2516792835C143132287 @default.
- W2516792835 hasConceptScore W2516792835C154945302 @default.
- W2516792835 hasConceptScore W2516792835C160826032 @default.
- W2516792835 hasConceptScore W2516792835C162324750 @default.
- W2516792835 hasConceptScore W2516792835C182306322 @default.
- W2516792835 hasConceptScore W2516792835C184992742 @default.
- W2516792835 hasConceptScore W2516792835C185592680 @default.
- W2516792835 hasConceptScore W2516792835C188082640 @default.
- W2516792835 hasConceptScore W2516792835C2777212361 @default.
- W2516792835 hasConceptScore W2516792835C2777404646 @default.
- W2516792835 hasConceptScore W2516792835C2780586882 @default.
- W2516792835 hasConceptScore W2516792835C2781311116 @default.
- W2516792835 hasConceptScore W2516792835C30236536 @default.
- W2516792835 hasConceptScore W2516792835C33923547 @default.
- W2516792835 hasConceptScore W2516792835C41008148 @default.
- W2516792835 hasConceptScore W2516792835C50555996 @default.
- W2516792835 hasConceptScore W2516792835C55493867 @default.
- W2516792835 hasConceptScore W2516792835C62520636 @default.
- W2516792835 hasConceptScore W2516792835C87945829 @default.
- W2516792835 hasLocation W25167928351 @default.
- W2516792835 hasOpenAccess W2516792835 @default.
- W2516792835 hasPrimaryLocation W25167928351 @default.
- W2516792835 hasRelatedWork W1978320572 @default.
- W2516792835 hasRelatedWork W1983939517 @default.
- W2516792835 hasRelatedWork W1990713566 @default.
- W2516792835 hasRelatedWork W1997170281 @default.
- W2516792835 hasRelatedWork W2017135012 @default.
- W2516792835 hasRelatedWork W2029920161 @default.
- W2516792835 hasRelatedWork W2036938863 @default.
- W2516792835 hasRelatedWork W2057363608 @default.
- W2516792835 hasRelatedWork W2064595930 @default.
- W2516792835 hasRelatedWork W2081059030 @default.
- W2516792835 hasRelatedWork W2101060950 @default.
- W2516792835 hasRelatedWork W2140615048 @default.
- W2516792835 hasRelatedWork W2148382311 @default.