Matches in SemOpenAlex for { <https://semopenalex.org/work/W2553526105> ?p ?o ?g. }
- W2553526105 endingPage "1781" @default.
- W2553526105 startingPage "1772" @default.
- W2553526105 abstract "Bus headway regularity heavily affects transit riders' attitude for choosing public transportation and also serves as an important indicator for transit performance evaluation. Therefore, an accurate estimate of bus headway can benefit both transit riders and transit operators. This paper proposed a relevance vector machine (RVM) algorithm to predict bus headway by incorporating the time series of bus headways, travel time, and passenger demand at previous stops. Different from traditional computational intelligence approaches, RVM can output the probabilistic prediction result, in which the upper and lower bounds of a predicted headway within a certain probability are yielded. An empirical experiment with two bus routes in Beijing, China, is utilized to confirm the high precision and strong robustness of the proposed model. Five algorithms [support vector machine (SVM), genetic algorithm SVM, Kalman filter, k-nearest neighbor, and artificial neural network] are used for comparison with the RVM model and the result indicates that RVM outperforms these algorithms in terms of accuracy and confidence intervals. When the confidence level is set to 95%, more than 95% of actual bus headways fall within the prediction bands. With the probabilistic bus headway prediction information, transit riders can better schedule their trips to avoid late and early arrivals at bus stops, while transit operators can adopt the targeted correction actions to maintain regular headway for bus bunching prevention." @default.
- W2553526105 created "2016-11-30" @default.
- W2553526105 creator A5023879828 @default.
- W2553526105 creator A5042582887 @default.
- W2553526105 creator A5045699018 @default.
- W2553526105 creator A5086740564 @default.
- W2553526105 date "2017-07-01" @default.
- W2553526105 modified "2023-10-14" @default.
- W2553526105 title "Probabilistic Prediction of Bus Headway Using Relevance Vector Machine Regression" @default.
- W2553526105 cites W1561128958 @default.
- W2553526105 cites W1971757341 @default.
- W2553526105 cites W1973940534 @default.
- W2553526105 cites W1979329469 @default.
- W2553526105 cites W1991694886 @default.
- W2553526105 cites W2002310850 @default.
- W2553526105 cites W2003359455 @default.
- W2553526105 cites W2004184346 @default.
- W2553526105 cites W2004831545 @default.
- W2553526105 cites W2007043321 @default.
- W2553526105 cites W2009527558 @default.
- W2553526105 cites W2011628330 @default.
- W2553526105 cites W2022832686 @default.
- W2553526105 cites W2026184121 @default.
- W2553526105 cites W2026524503 @default.
- W2553526105 cites W2027420401 @default.
- W2553526105 cites W2031849834 @default.
- W2553526105 cites W2034628819 @default.
- W2553526105 cites W2039559615 @default.
- W2553526105 cites W2040849593 @default.
- W2553526105 cites W2041567331 @default.
- W2553526105 cites W2041644399 @default.
- W2553526105 cites W2042622815 @default.
- W2553526105 cites W2058586158 @default.
- W2553526105 cites W2062017159 @default.
- W2553526105 cites W2062778018 @default.
- W2553526105 cites W2067950570 @default.
- W2553526105 cites W2071277963 @default.
- W2553526105 cites W2080811070 @default.
- W2553526105 cites W2082280406 @default.
- W2553526105 cites W2083022762 @default.
- W2553526105 cites W2084149256 @default.
- W2553526105 cites W2087198207 @default.
- W2553526105 cites W2091439727 @default.
- W2553526105 cites W2104554956 @default.
- W2553526105 cites W2106110155 @default.
- W2553526105 cites W2126766519 @default.
- W2553526105 cites W2127529517 @default.
- W2553526105 cites W2130715829 @default.
- W2553526105 cites W2136758849 @default.
- W2553526105 cites W2144462757 @default.
- W2553526105 cites W2151611727 @default.
- W2553526105 cites W2169069957 @default.
- W2553526105 cites W2229834149 @default.
- W2553526105 cites W2472567412 @default.
- W2553526105 doi "https://doi.org/10.1109/tits.2016.2620483" @default.
- W2553526105 hasPublicationYear "2017" @default.
- W2553526105 type Work @default.
- W2553526105 sameAs 2553526105 @default.
- W2553526105 citedByCount "45" @default.
- W2553526105 countsByYear W25535261052017 @default.
- W2553526105 countsByYear W25535261052018 @default.
- W2553526105 countsByYear W25535261052019 @default.
- W2553526105 countsByYear W25535261052020 @default.
- W2553526105 countsByYear W25535261052021 @default.
- W2553526105 countsByYear W25535261052022 @default.
- W2553526105 crossrefType "journal-article" @default.
- W2553526105 hasAuthorship W2553526105A5023879828 @default.
- W2553526105 hasAuthorship W2553526105A5042582887 @default.
- W2553526105 hasAuthorship W2553526105A5045699018 @default.
- W2553526105 hasAuthorship W2553526105A5086740564 @default.
- W2553526105 hasConcept C119857082 @default.
- W2553526105 hasConcept C12267149 @default.
- W2553526105 hasConcept C124101348 @default.
- W2553526105 hasConcept C127413603 @default.
- W2553526105 hasConcept C14948415 @default.
- W2553526105 hasConcept C154945302 @default.
- W2553526105 hasConcept C22212356 @default.
- W2553526105 hasConcept C2779240695 @default.
- W2553526105 hasConcept C41008148 @default.
- W2553526105 hasConcept C44154836 @default.
- W2553526105 hasConcept C49937458 @default.
- W2553526105 hasConcept C539828613 @default.
- W2553526105 hasConceptScore W2553526105C119857082 @default.
- W2553526105 hasConceptScore W2553526105C12267149 @default.
- W2553526105 hasConceptScore W2553526105C124101348 @default.
- W2553526105 hasConceptScore W2553526105C127413603 @default.
- W2553526105 hasConceptScore W2553526105C14948415 @default.
- W2553526105 hasConceptScore W2553526105C154945302 @default.
- W2553526105 hasConceptScore W2553526105C22212356 @default.
- W2553526105 hasConceptScore W2553526105C2779240695 @default.
- W2553526105 hasConceptScore W2553526105C41008148 @default.
- W2553526105 hasConceptScore W2553526105C44154836 @default.
- W2553526105 hasConceptScore W2553526105C49937458 @default.
- W2553526105 hasConceptScore W2553526105C539828613 @default.
- W2553526105 hasFunder F4320321001 @default.
- W2553526105 hasFunder F4320334978 @default.
- W2553526105 hasIssue "7" @default.
- W2553526105 hasLocation W25535261051 @default.