Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570295517> ?p ?o ?g. }
- W2570295517 endingPage "8" @default.
- W2570295517 startingPage "1" @default.
- W2570295517 abstract "Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result." @default.
- W2570295517 created "2017-01-13" @default.
- W2570295517 creator A5074144985 @default.
- W2570295517 creator A5075391815 @default.
- W2570295517 creator A5075998876 @default.
- W2570295517 date "2017-01-01" @default.
- W2570295517 modified "2023-10-16" @default.
- W2570295517 title "Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information" @default.
- W2570295517 cites W1891536063 @default.
- W2570295517 cites W1967547048 @default.
- W2570295517 cites W1989921625 @default.
- W2570295517 cites W1993418188 @default.
- W2570295517 cites W1998099667 @default.
- W2570295517 cites W2010996621 @default.
- W2570295517 cites W2023348596 @default.
- W2570295517 cites W2025803032 @default.
- W2570295517 cites W2037069407 @default.
- W2570295517 cites W2043652309 @default.
- W2570295517 cites W2044525257 @default.
- W2570295517 cites W2054286320 @default.
- W2570295517 cites W2067931273 @default.
- W2570295517 cites W2087535060 @default.
- W2570295517 cites W2092300972 @default.
- W2570295517 cites W2105712639 @default.
- W2570295517 cites W2106927126 @default.
- W2570295517 cites W2110346818 @default.
- W2570295517 cites W2115021853 @default.
- W2570295517 cites W2115108153 @default.
- W2570295517 cites W2123895078 @default.
- W2570295517 cites W2124288003 @default.
- W2570295517 cites W2125432874 @default.
- W2570295517 cites W2127788692 @default.
- W2570295517 cites W2129265801 @default.
- W2570295517 cites W2131301064 @default.
- W2570295517 cites W2132663737 @default.
- W2570295517 cites W2136559804 @default.
- W2570295517 cites W2138019504 @default.
- W2570295517 cites W2143076232 @default.
- W2570295517 cites W2143512492 @default.
- W2570295517 cites W2149135811 @default.
- W2570295517 cites W2160668760 @default.
- W2570295517 cites W2161922735 @default.
- W2570295517 cites W2603514654 @default.
- W2570295517 cites W2963377800 @default.
- W2570295517 cites W3099289621 @default.
- W2570295517 cites W3100253669 @default.
- W2570295517 doi "https://doi.org/10.1155/2017/8307530" @default.
- W2570295517 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5241943" @default.
- W2570295517 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28133490" @default.
- W2570295517 hasPublicationYear "2017" @default.
- W2570295517 type Work @default.
- W2570295517 sameAs 2570295517 @default.
- W2570295517 citedByCount "9" @default.
- W2570295517 countsByYear W25702955172016 @default.
- W2570295517 countsByYear W25702955172017 @default.
- W2570295517 countsByYear W25702955172018 @default.
- W2570295517 countsByYear W25702955172019 @default.
- W2570295517 countsByYear W25702955172020 @default.
- W2570295517 countsByYear W25702955172021 @default.
- W2570295517 countsByYear W25702955172022 @default.
- W2570295517 crossrefType "journal-article" @default.
- W2570295517 hasAuthorship W2570295517A5074144985 @default.
- W2570295517 hasAuthorship W2570295517A5075391815 @default.
- W2570295517 hasAuthorship W2570295517A5075998876 @default.
- W2570295517 hasBestOaLocation W25702955171 @default.
- W2570295517 hasConcept C102366305 @default.
- W2570295517 hasConcept C104317684 @default.
- W2570295517 hasConcept C107673813 @default.
- W2570295517 hasConcept C119857082 @default.
- W2570295517 hasConcept C124101348 @default.
- W2570295517 hasConcept C149782125 @default.
- W2570295517 hasConcept C150194340 @default.
- W2570295517 hasConcept C154945302 @default.
- W2570295517 hasConcept C160234255 @default.
- W2570295517 hasConcept C177769412 @default.
- W2570295517 hasConcept C22019652 @default.
- W2570295517 hasConcept C2776214188 @default.
- W2570295517 hasConcept C2781067378 @default.
- W2570295517 hasConcept C33923547 @default.
- W2570295517 hasConcept C41008148 @default.
- W2570295517 hasConcept C50644808 @default.
- W2570295517 hasConcept C55493867 @default.
- W2570295517 hasConcept C67339327 @default.
- W2570295517 hasConcept C86803240 @default.
- W2570295517 hasConceptScore W2570295517C102366305 @default.
- W2570295517 hasConceptScore W2570295517C104317684 @default.
- W2570295517 hasConceptScore W2570295517C107673813 @default.
- W2570295517 hasConceptScore W2570295517C119857082 @default.
- W2570295517 hasConceptScore W2570295517C124101348 @default.
- W2570295517 hasConceptScore W2570295517C149782125 @default.
- W2570295517 hasConceptScore W2570295517C150194340 @default.
- W2570295517 hasConceptScore W2570295517C154945302 @default.
- W2570295517 hasConceptScore W2570295517C160234255 @default.
- W2570295517 hasConceptScore W2570295517C177769412 @default.
- W2570295517 hasConceptScore W2570295517C22019652 @default.
- W2570295517 hasConceptScore W2570295517C2776214188 @default.
- W2570295517 hasConceptScore W2570295517C2781067378 @default.
- W2570295517 hasConceptScore W2570295517C33923547 @default.