Matches in SemOpenAlex for { <https://semopenalex.org/work/W2572616666> ?p ?o ?g. }
- W2572616666 endingPage "26" @default.
- W2572616666 startingPage "1" @default.
- W2572616666 abstract "The queries issued to search engines are often ambiguous or multifaceted, which requires search engines to return diverse results that can fulfill as many different information needs as possible; this is called search result diversification . Recently, the relational learning to rank model, which designs a learnable ranking function following the criterion of maximal marginal relevance, has shown effectiveness in search result diversification [Zhu et al. 2014]. The goodness of a diverse ranking model is usually evaluated with diversity evaluation measures such as α-NDCG [Clarke et al. 2008], ERR-IA [Chapelle et al. 2009], and D#-NDCG [Sakai and Song 2011]. Ideally the learning algorithm would train a ranking model that could directly optimize the diversity evaluation measures with respect to the training data. Existing relational learning to rank algorithms, however, only train the ranking models by optimizing loss functions that loosely relate to the evaluation measures. To deal with the problem, we propose a general framework for learning relational ranking models via directly optimizing any diversity evaluation measure . In learning, the loss function upper-bounding the basic loss function defined on a diverse ranking measure is minimized. We can derive new diverse ranking algorithms under the framework, and several diverse ranking algorithms are created based on different upper bounds over the basic loss function. We conducted comparisons between the proposed algorithms with conventional diverse ranking methods using the TREC benchmark datasets. Experimental results show that the algorithms derived under the diverse learning to rank framework always significantly outperform the state-of-the-art baselines." @default.
- W2572616666 created "2017-01-26" @default.
- W2572616666 creator A5020766468 @default.
- W2572616666 creator A5029998682 @default.
- W2572616666 creator A5032087333 @default.
- W2572616666 creator A5086457585 @default.
- W2572616666 creator A5088621320 @default.
- W2572616666 date "2017-01-12" @default.
- W2572616666 modified "2023-09-24" @default.
- W2572616666 title "Directly Optimize Diversity Evaluation Measures" @default.
- W2572616666 cites W1498594556 @default.
- W2572616666 cites W1973296628 @default.
- W2572616666 cites W1990473707 @default.
- W2572616666 cites W1993320088 @default.
- W2572616666 cites W2005084129 @default.
- W2572616666 cites W2008652694 @default.
- W2572616666 cites W2009979684 @default.
- W2572616666 cites W2023188792 @default.
- W2572616666 cites W2023599408 @default.
- W2572616666 cites W2047804176 @default.
- W2572616666 cites W2058624977 @default.
- W2572616666 cites W2070740689 @default.
- W2572616666 cites W2088121730 @default.
- W2572616666 cites W2100419635 @default.
- W2572616666 cites W2103404183 @default.
- W2572616666 cites W2104373244 @default.
- W2572616666 cites W2104895009 @default.
- W2572616666 cites W2107126505 @default.
- W2572616666 cites W2113640060 @default.
- W2572616666 cites W2132314908 @default.
- W2572616666 cites W2136453262 @default.
- W2572616666 cites W2148367931 @default.
- W2572616666 cites W2149427297 @default.
- W2572616666 cites W2152228468 @default.
- W2572616666 cites W2157391629 @default.
- W2572616666 cites W2163200373 @default.
- W2572616666 cites W2171749496 @default.
- W2572616666 cites W2267735350 @default.
- W2572616666 cites W3138773240 @default.
- W2572616666 cites W4213009331 @default.
- W2572616666 cites W4230624213 @default.
- W2572616666 cites W4233135949 @default.
- W2572616666 doi "https://doi.org/10.1145/2983921" @default.
- W2572616666 hasPublicationYear "2017" @default.
- W2572616666 type Work @default.
- W2572616666 sameAs 2572616666 @default.
- W2572616666 citedByCount "12" @default.
- W2572616666 countsByYear W25726166662017 @default.
- W2572616666 countsByYear W25726166662018 @default.
- W2572616666 countsByYear W25726166662019 @default.
- W2572616666 countsByYear W25726166662020 @default.
- W2572616666 countsByYear W25726166662021 @default.
- W2572616666 countsByYear W25726166662022 @default.
- W2572616666 crossrefType "journal-article" @default.
- W2572616666 hasAuthorship W2572616666A5020766468 @default.
- W2572616666 hasAuthorship W2572616666A5029998682 @default.
- W2572616666 hasAuthorship W2572616666A5032087333 @default.
- W2572616666 hasAuthorship W2572616666A5086457585 @default.
- W2572616666 hasAuthorship W2572616666A5088621320 @default.
- W2572616666 hasConcept C114614502 @default.
- W2572616666 hasConcept C119857082 @default.
- W2572616666 hasConcept C124101348 @default.
- W2572616666 hasConcept C124975894 @default.
- W2572616666 hasConcept C13280743 @default.
- W2572616666 hasConcept C14036430 @default.
- W2572616666 hasConcept C154945302 @default.
- W2572616666 hasConcept C158154518 @default.
- W2572616666 hasConcept C164226766 @default.
- W2572616666 hasConcept C17744445 @default.
- W2572616666 hasConcept C185798385 @default.
- W2572616666 hasConcept C189430467 @default.
- W2572616666 hasConcept C199539241 @default.
- W2572616666 hasConcept C205649164 @default.
- W2572616666 hasConcept C23123220 @default.
- W2572616666 hasConcept C33923547 @default.
- W2572616666 hasConcept C41008148 @default.
- W2572616666 hasConcept C63584917 @default.
- W2572616666 hasConcept C78458016 @default.
- W2572616666 hasConcept C86037889 @default.
- W2572616666 hasConcept C86803240 @default.
- W2572616666 hasConceptScore W2572616666C114614502 @default.
- W2572616666 hasConceptScore W2572616666C119857082 @default.
- W2572616666 hasConceptScore W2572616666C124101348 @default.
- W2572616666 hasConceptScore W2572616666C124975894 @default.
- W2572616666 hasConceptScore W2572616666C13280743 @default.
- W2572616666 hasConceptScore W2572616666C14036430 @default.
- W2572616666 hasConceptScore W2572616666C154945302 @default.
- W2572616666 hasConceptScore W2572616666C158154518 @default.
- W2572616666 hasConceptScore W2572616666C164226766 @default.
- W2572616666 hasConceptScore W2572616666C17744445 @default.
- W2572616666 hasConceptScore W2572616666C185798385 @default.
- W2572616666 hasConceptScore W2572616666C189430467 @default.
- W2572616666 hasConceptScore W2572616666C199539241 @default.
- W2572616666 hasConceptScore W2572616666C205649164 @default.
- W2572616666 hasConceptScore W2572616666C23123220 @default.
- W2572616666 hasConceptScore W2572616666C33923547 @default.
- W2572616666 hasConceptScore W2572616666C41008148 @default.
- W2572616666 hasConceptScore W2572616666C63584917 @default.