Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594366444> ?p ?o ?g. }
- W2594366444 abstract "Backgrounds: With the advent of the post genomic era, the research for the genetic mechanism of the diseases has found to be increasingly depended on the studies of the genes, the gene-networks and gene-protein interaction networks. To explore gene expression and regulation, the researchers have carried out many studies on transcription factors and their binding sites (TFBSs). Based on the large amount of transcription factor binding sites predicting values in the deep learning models, further computation and analysis have been done to reveal the relationship between the gene mutation and the occurrence of the disease. It has been demonstrated that based on the deep learning methods, the performances of the prediction for the functions of the noncoding variants are outperforming than those of the conventional methods. The research on the prediction for functions of Single Nucleotide Polymorphisms (SNPs) is expected to uncover the mechanism of the gene mutation affection on traits and diseases of human beings. Results: We reviewed the conventional TFBSs identification methods from different perspectives. As for the deep learning methods to predict the TFBSs, we discussed the related problems, such as the raw data preprocessing, the structure design of the deep convolution neural network (CNN) and the model performance measure et al. And then we summarized the techniques that usually used in finding out the functional noncoding variants from de novo sequence. Conclusion: Along with the rapid development of the high-throughout assays, more and more sample data and chromatin features would be conducive to improve the prediction accuracy of the deep convolution neural network for TFBSs identification. Meanwhile, getting more insights into the deep CNN framework itself has been proved useful for both the promotion on model performance and the development for more suitable design to sample data. Based on the feature values predicted by the deep CNN model, the prioritization model for functional noncoding variants would contribute to reveal the affection of gene mutation on the diseases." @default.
- W2594366444 created "2017-03-16" @default.
- W2594366444 creator A5019283050 @default.
- W2594366444 creator A5041435352 @default.
- W2594366444 creator A5084370154 @default.
- W2594366444 date "2017-07-26" @default.
- W2594366444 modified "2023-09-24" @default.
- W2594366444 title "Noncoding Variants Functional Prioritization Methods Based on Predicted Regulatory Factor Binding Sites" @default.
- W2594366444 cites W1019830208 @default.
- W2594366444 cites W1214546200 @default.
- W2594366444 cites W1483073028 @default.
- W2594366444 cites W1543459401 @default.
- W2594366444 cites W1544691147 @default.
- W2594366444 cites W1553587640 @default.
- W2594366444 cites W1560916735 @default.
- W2594366444 cites W1575415973 @default.
- W2594366444 cites W1577392641 @default.
- W2594366444 cites W1592870802 @default.
- W2594366444 cites W1723510838 @default.
- W2594366444 cites W1923847831 @default.
- W2594366444 cites W1964963969 @default.
- W2594366444 cites W1968536479 @default.
- W2594366444 cites W1973556785 @default.
- W2594366444 cites W1979208523 @default.
- W2594366444 cites W1981088384 @default.
- W2594366444 cites W1983102462 @default.
- W2594366444 cites W1984053739 @default.
- W2594366444 cites W1988581590 @default.
- W2594366444 cites W1988795249 @default.
- W2594366444 cites W1989773675 @default.
- W2594366444 cites W1994823394 @default.
- W2594366444 cites W1998300401 @default.
- W2594366444 cites W1999438528 @default.
- W2594366444 cites W1999790144 @default.
- W2594366444 cites W2001554877 @default.
- W2594366444 cites W2005129098 @default.
- W2594366444 cites W2006322387 @default.
- W2594366444 cites W2008051478 @default.
- W2594366444 cites W2008535448 @default.
- W2594366444 cites W2008812172 @default.
- W2594366444 cites W2010698613 @default.
- W2594366444 cites W2012114217 @default.
- W2594366444 cites W2015050458 @default.
- W2594366444 cites W2017435800 @default.
- W2594366444 cites W2018189081 @default.
- W2594366444 cites W2018207080 @default.
- W2594366444 cites W2021654829 @default.
- W2594366444 cites W2028904582 @default.
- W2594366444 cites W2030209169 @default.
- W2594366444 cites W2036253517 @default.
- W2594366444 cites W2037940015 @default.
- W2594366444 cites W2042392223 @default.
- W2594366444 cites W2043876754 @default.
- W2594366444 cites W2045718795 @default.
- W2594366444 cites W2045791858 @default.
- W2594366444 cites W2046842005 @default.
- W2594366444 cites W2048869777 @default.
- W2594366444 cites W2051640319 @default.
- W2594366444 cites W2054984882 @default.
- W2594366444 cites W2061008984 @default.
- W2594366444 cites W2061680337 @default.
- W2594366444 cites W2063173212 @default.
- W2594366444 cites W2063901213 @default.
- W2594366444 cites W2073675943 @default.
- W2594366444 cites W2073850887 @default.
- W2594366444 cites W2074703985 @default.
- W2594366444 cites W2077090283 @default.
- W2594366444 cites W2078034709 @default.
- W2594366444 cites W2081277704 @default.
- W2594366444 cites W2086802511 @default.
- W2594366444 cites W2092390808 @default.
- W2594366444 cites W2095416319 @default.
- W2594366444 cites W2095791120 @default.
- W2594366444 cites W2097175728 @default.
- W2594366444 cites W2104500293 @default.
- W2594366444 cites W2105025553 @default.
- W2594366444 cites W2109314645 @default.
- W2594366444 cites W2110738405 @default.
- W2594366444 cites W2111359483 @default.
- W2594366444 cites W2112430946 @default.
- W2594366444 cites W2112741367 @default.
- W2594366444 cites W2113903955 @default.
- W2594366444 cites W2115272837 @default.
- W2594366444 cites W2117396697 @default.
- W2594366444 cites W2118393799 @default.
- W2594366444 cites W2118526609 @default.
- W2594366444 cites W2121356022 @default.
- W2594366444 cites W2121967239 @default.
- W2594366444 cites W2125811524 @default.
- W2594366444 cites W2126243836 @default.
- W2594366444 cites W2131822317 @default.
- W2594366444 cites W2135221645 @default.
- W2594366444 cites W2136347228 @default.
- W2594366444 cites W2138069158 @default.
- W2594366444 cites W2140966642 @default.
- W2594366444 cites W2142410561 @default.
- W2594366444 cites W2145295592 @default.
- W2594366444 cites W2148014281 @default.
- W2594366444 cites W2149769193 @default.
- W2594366444 cites W2153261862 @default.