Matches in SemOpenAlex for { <https://semopenalex.org/work/W2604536700> ?p ?o ?g. }
- W2604536700 endingPage "602" @default.
- W2604536700 startingPage "587" @default.
- W2604536700 abstract "In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that database learning supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems." @default.
- W2604536700 created "2017-04-14" @default.
- W2604536700 creator A5023168280 @default.
- W2604536700 creator A5039133265 @default.
- W2604536700 creator A5060287971 @default.
- W2604536700 creator A5064453427 @default.
- W2604536700 date "2017-05-09" @default.
- W2604536700 modified "2023-09-26" @default.
- W2604536700 title "Database Learning: Toward a Database that Becomes Smarter Every Time" @default.
- W2604536700 cites W1506806321 @default.
- W2604536700 cites W1512387364 @default.
- W2604536700 cites W1539863007 @default.
- W2604536700 cites W1564381193 @default.
- W2604536700 cites W1571066610 @default.
- W2604536700 cites W1581231885 @default.
- W2604536700 cites W1603054560 @default.
- W2604536700 cites W1656389077 @default.
- W2604536700 cites W1976241222 @default.
- W2604536700 cites W2002791618 @default.
- W2604536700 cites W2011067751 @default.
- W2604536700 cites W2017992824 @default.
- W2604536700 cites W2018030107 @default.
- W2604536700 cites W2020584928 @default.
- W2604536700 cites W2024562752 @default.
- W2604536700 cites W2024642328 @default.
- W2604536700 cites W2026319679 @default.
- W2604536700 cites W2027388991 @default.
- W2604536700 cites W2027685188 @default.
- W2604536700 cites W2037701287 @default.
- W2604536700 cites W2038412523 @default.
- W2604536700 cites W2043097023 @default.
- W2604536700 cites W2049199200 @default.
- W2604536700 cites W2065672113 @default.
- W2604536700 cites W2066179253 @default.
- W2604536700 cites W2066293100 @default.
- W2604536700 cites W2071989194 @default.
- W2604536700 cites W2083253319 @default.
- W2604536700 cites W2096175520 @default.
- W2604536700 cites W2106753423 @default.
- W2604536700 cites W2110363867 @default.
- W2604536700 cites W2112545207 @default.
- W2604536700 cites W2117348908 @default.
- W2604536700 cites W2119738171 @default.
- W2604536700 cites W2122816893 @default.
- W2604536700 cites W2131111873 @default.
- W2604536700 cites W2137956165 @default.
- W2604536700 cites W2138178898 @default.
- W2604536700 cites W2139276812 @default.
- W2604536700 cites W2139783012 @default.
- W2604536700 cites W2142637263 @default.
- W2604536700 cites W2150115297 @default.
- W2604536700 cites W2152029707 @default.
- W2604536700 cites W2152191782 @default.
- W2604536700 cites W2152637787 @default.
- W2604536700 cites W2153674115 @default.
- W2604536700 cites W2163438246 @default.
- W2604536700 cites W2164507334 @default.
- W2604536700 cites W2165990006 @default.
- W2604536700 cites W2167631575 @default.
- W2604536700 cites W2204875540 @default.
- W2604536700 cites W2245828441 @default.
- W2604536700 cites W2257756289 @default.
- W2604536700 cites W2272315143 @default.
- W2604536700 cites W2284530523 @default.
- W2604536700 cites W2287207825 @default.
- W2604536700 cites W2292609460 @default.
- W2604536700 cites W2296677182 @default.
- W2604536700 cites W2327625429 @default.
- W2604536700 cites W2397173492 @default.
- W2604536700 cites W2401409094 @default.
- W2604536700 cites W2401507339 @default.
- W2604536700 cites W2429510775 @default.
- W2604536700 cites W2436120840 @default.
- W2604536700 cites W2438261314 @default.
- W2604536700 cites W2520738984 @default.
- W2604536700 cites W2583966909 @default.
- W2604536700 cites W2584246098 @default.
- W2604536700 cites W2612337305 @default.
- W2604536700 cites W2615303257 @default.
- W2604536700 cites W2807981689 @default.
- W2604536700 cites W3120740533 @default.
- W2604536700 cites W3198350258 @default.
- W2604536700 cites W335227069 @default.
- W2604536700 cites W346507350 @default.
- W2604536700 cites W654652841 @default.
- W2604536700 hasPublicationYear "2017" @default.
- W2604536700 type Work @default.
- W2604536700 sameAs 2604536700 @default.
- W2604536700 citedByCount "11" @default.
- W2604536700 countsByYear W26045367002018 @default.
- W2604536700 countsByYear W26045367002019 @default.
- W2604536700 countsByYear W26045367002020 @default.
- W2604536700 countsByYear W26045367002021 @default.
- W2604536700 crossrefType "proceedings-article" @default.
- W2604536700 hasAuthorship W2604536700A5023168280 @default.
- W2604536700 hasAuthorship W2604536700A5039133265 @default.
- W2604536700 hasAuthorship W2604536700A5060287971 @default.
- W2604536700 hasAuthorship W2604536700A5064453427 @default.